TUNA Plus

Tunnel Analysis Program

Version 7.01

COMTEC RESEARCH

Copyright @2019 by COMTEC RESEARCH

All right reserved. No part of this manual may be reproduced in any form or by any means without a written permission of COMTEC RESEARCH.

Printed in the United States of America.

LICENSE AGREEMENT

<u>LICENSE</u>: COMTEC RESEARCH grants to Licensee a non-exclusive,non-transferable right to use the enclosed Computer Program only on a single computer. The use of the Computer Program is limited to the Licensee's own project. Licensee may not use the Computer Program to serve other engineering companies or individuals without prior written permission of COMTEC RESEARCH. Licensee may not distribute copies of the Computer Program or Documentation to others. Licensee may not rent, lease, or network the Computer Program without prior written permission of COMTEC RESEARCH.

<u>TERM:</u> The License is effective as long as the Licensee complies with the terms of this Agreement. The License will be terminated if the Licensee fails to comply with any term or condition of the Agreement. Upon such termination, the Licensee must return all copies of the Computer Program, Software Security Activator and Documentation to COMTEC RESEARCH within seven days.

<u>COPYRIGHT:</u> The Licensed Computer Program and its Documentation are copyrighted. Licensee agrees to include the appropriate copyright notice on all copies and partial copies.

<u>USER SUPPORT</u>: COMTEC RESEARCH will provide the Software Support for the Registered Users for a period of 90 days from the date of purchase. User support is limited to the investigation of problems associated with the correct operation of the Licensed Computer Program. The Licensee must return the Registration Card in order to register the Licensed Computer Program.

DISCLAIMER: COMTEC RESEARCH has spent considerable time and efforts in checking the enclosed Computer Program. However, no warranty is made with respect to the accuracy or reliability of the Computer Program. In no event will COMTEC RESEARCH be liable for incidental or consequential damages arising from the use of the Computer Program.

<u>UPDATE POLICY</u>: Update programs will be available to the Registered Licensee for a nominal fee. The Licensee must return all the Original Distribution Diskettes and Software Security Activator to receive the update programs.

<u>GENERAL</u>: The State of California Law and the U. S. Copyright Law will govern the validity of the Agreement. This Agreement may be modified only by a written consent between the parties. COMTEC RESEARCH, 12492 Greene Ave., Los Angeles, CA 90066, U.S.A

Con	tents	
1.	Intro	duction
	1.1	Overview
	1.2	Features
	1.3	Assumptions 1-2
2.	Insta	lling TUNA Plus
	2.1	Minimum System Requirements 2-1
	2.2	Installation Procedure
3.	Runni	ing Programs
	3.1	Introduction
	3.2	RUN Menu 3-4
	3.3	PLOT Menu
	3.4	SETUP Menu
		3.4.1 General Setup
		3.4.2 PLOT-XY Setup
	2 5	3.4.3 PLOT-2D Setup
	3.5	Debugging TUNA Plus Main-Processing Program 3-13
А	Descr	intion of Input Data
5.	Descr	intion of Output Data 5-1
6.	Exam	ple Problems
	6.1	Example 1
	6.2	Example 2
	6.3	Example 3
	6.4	Example 4
	6.5	Example 5
	6.6	Example 6 6-191
	6.7	Example 7
	6.8	Example 8
	6.9	Example 9 6-240

Introduction

1.1. Overview

TUNA Plus is a fully automated computer program developed for tunnel analysis such as NATM (New Austrian Tunneling Method), TBM, Shield, etc. TUNA Plus employs SMAP-S2 which is a static, two-dimensional, nonlinear finite element program developed by COMTEC RESEARCH. Pre- and post-processors of TUNA Plus are built-in so that only the physical geometries and material properties associated with a proposed tunnel are required as input and graphical outputs can be obtained directly.

1.2 Features

Features of TUNA Plus include:

- Nonlinear Liner-Medium Interaction
- English and Metric Units
- Geometry of Tunnels;
 - Single Tunnel (Half Section)
 - Single Tunnel (Full Section)
 - Symmetric Two Tunnels
 - Unsymmetric Two Tunnels
- Multi-Layered Geological Medium
- Liner Loads
 - Weight
 - Water Pressure
 - Loosening Load
 - Support Degradation
- Circular, Horseshoe, or User Defined Tunnel Shapes
- Plain Concrete and Reinforced Concrete Liners

1-2 Introduction

- Multi-Staged Excavations
- shotcrete and Rock Bolt Installation
- Graphical Outputs
 - Ground Surface Settlement
 - Tunnel Deformed Shape
 - Principal Stress in the Shotcrete and the Surrounding Medium
 - Contours of Safety Factor
 - Axial Stresses of Rock Bolt
 - Deformed Shape of Liner
 - Bending Moment, Thrust, and Shear in the Liner
 - Stresses in the Reinforcing Bars
 - Stresses in the Extreme Fibers of the Liner
 - Displacement History at Ground Surface, Tunnel Crown, Spring Line, and Invert

1.3 Assumptions

Assumptions for NATM tunnel analysis:

- Plane strain condition in the longitudinal tunnel direction.
- Each excavation stage involves three steps; the step for stress release before placing soft shotcrete or rock bolts, the step for which shotcrete remains in soft state, and the step for which shotcrete remains in hard state.
- Liners are installed when the tunnel excavation is completed. Liner deformations are due to self weight, ground water pressure, loosening load, and degradaion of primary supports.
- Surrounding medium and shotcrete are modeled by continuum element with Mohr-Coulomb material model.
- Rock bolts are modeled by nonlinear truss element.
- Liners are modeled by reinforced layered beam elements with Mohr-Coulomb material model.
- Interface between the liner and the surrounding medium is modeled by joint element with Mohr-Coulomb material model.

4 Double-click Setup ave	
4. Double-click Setup.exe	SMAP-CD
	📕 Data
	Programs
	🛃 Setup.exe
	Setup.Lst
	🐌 Smap.cab
	Smap_Install_Guide.pdf
5. Click OK	₿ SMAP Setup ×
	Welcome to the SMAP installation program.
	Setup cannot install system files or undate shared files if they are in use
	Before proceeding, we recommend that you dose any applications you may be running.
	OK Exit Setup
6. Click Next	Selecting SMAP Programs
 Click Next It will take few minutes. 	Selecting SMAP Programs X
 Click Next It will take few minutes. Wait until next step. 	Selecting SMAP Programs ×
 Click Next It will take few minutes. Wait until next step. 	Selecting SMAP Programs X Select Setup No Setup 1 All Programs (Recommend) C Setup 2 20 Set S2 S3 20 20 Tupa Tupa Plue
 Click Next It will take few minutes. Wait until next step. 	 Selecting SMAP Programs Select Setup No © Setup 1 All Programs (Recommend) © Setup 2 3D Set : S2, S3, 2D, 3D, Tuna, Tuna Plus © Setup 3 2D Set : S2, 2D, Tuna, Tuna Plus
 Click Next It will take few minutes. Wait until next step. 	 Selecting SMAP Programs Select Setup No Setup 1 All Programs (Recommend) Setup 2 3D Set : S2, S3, 2D, 3D, Tuna, Tuna Plus Setup 3 2D Set : S2, 2D, Tuna, Tuna Plus Setup 4 Thermal Set : T2, T3
 Click Next It will take few minutes. Wait until next step. 	 Selecting SMAP Programs Select Setup No Setup 1 All Programs (Recommend) Setup 2 3D Set: S2, S3, 2D, 3D, Tuna, Tuna Plus Setup 3 2D Set: S2, 2D, Tuna, Tuna Plus Setup 4 Thermal Set: T2, T3 Setup 5 Turp
 Click Next It will take few minutes. Wait until next step. 	 Selecting SMAP Programs Select Setup No Setup 1 All Programs (Recommend) Setup 2 3D Set: S2, S3, 2D, 3D, Tuna, Tuna Plus Setup 3 2D Set: S2, 2D, Tuna, Tuna Plus Setup 4 Thermal Set: T2, T3 Setup 6 Tuna C Setup 7 Tuna Plus Setup 11 Sece S2
 Click Next It will take few minutes. Wait until next step. 	 Selecting SMAP Programs Select Setup No Setup 1 All Programs (Recommend) Setup 2 3D Set: S2, S3, 2D, 3D, Tuna, Tuna Plus Setup 3 2D Set: S2, 2D, Tuna, Tuna Plus Setup 4 Thermal Set: T2, T3 Setup 6 Tuna C Setup 7 Tuna Plus Setup 11 Smap S2 C Setup 12 Smap S3 Setup 13 Source 2D
6. Click Next It will take few minutes. Wait until next step.	 Selecting SMAP Programs Select Setup No Setup 1 All Programs (Recommend) Setup 2 3D Set: S2, S3, 2D, 3D, Tuna, Tuna Plus Setup 3 2D Set: S2, 2D, Tuna, Tuna Plus Setup 4 Thermal Set: T2, T3 Setup 6 Tuna C Setup 7 Tuna Plus Setup 11 Smap S2 C Setup 12 Smap S3 Setup 13 Smap 2D C Setup 14 Smap 3D
 Click Next It will take few minutes. Wait until next step. 	 Selecting SMAP Programs Select Setup No Setup 1 All Programs (Recommend) Setup 2 3D Set: S2, S3, 2D, 3D, Tuna, Tuna Plus Setup 3 2D Set: S2, 2D, Tuna, Tuna Plus Setup 4 Thermal Set: T2, T3 Setup 6 Tuna Setup 7 Tuna Plus Setup 11 Smap S2 Setup 12 Smap S3 Setup 13 Smap 2D Setup 14 Smap 3D Setup 15 Smap T2 Setup 16 Smap T3

7.	Click Continue	🔀 SMAP - Choose Program Group	×
		Setup will add items to the group shown in the Program Group box. You can enter a new group name or select one from the Existing Groups list.	
		Program Group:	
		Existing Groups: Accessibility Accessories Administrative Tools Maintenance	
		SMAP Startup System Tools Windows PowerShell	
		Cancel	_
0			
0.		SMAP Setup X	<
		SMAP Setup was completed successfully.	
		OK	
9.	Click OK	Successful Smap Installation	×
		Please delete: C:\SmapSetupAdd.dat and C:\SmapSetupLog.dat	

2-4 Installing TUNA Plus

Note:

Following two log files will be generated once finished: C:\SmapSetupAdd.dat C:\SmapSetupLog.dat

If Smap Installation is successful, delete these two files.

If Smap Installation is not successful, follow the instruction in SmapSetupAdd.dat.

If you still have problems with Smap Installation, send these two files to info@ComtecResearch.com

Running Programs 3-1

Running Programs

3.1 Introduction

Once you prepared the input file as described in Section 4, running **TUNA Plus** program is straightforward since finite element meshes and graphical instruction files are automatically generated.

Accessing TUNA Plus Program

- When it is the first time, you copy Smap.exe in C:\Ct\Ctmenu and setup a Shortcut to SMAP Icon on your computer desktop. Then You simply double-click SMAP Shortcut.
- 2. Select **TUNA Plus** radio button and then click **OK** button.

Select Program		1
C SMAP S2	C SMAP S3	<u>O</u> K
C SMAP 2D	C SMAP 3D	Cancel
C SMAP T2	C SMAP T3	Key Info.
C TUNA	TUNA Plus	

3. Next, you need to select Working Directory. Working Directory should be the existing directory where all the output files are saved. It is a good idea to have all your input files for the current project in this Working Directory. Click the disk drive, double-click the directory, and then OK button. Note that when you select Working Directory, a sub directory Temp is created automatically. All intermediate scratch files are saved in this sub directory Temp.

C:\SMAP\TUNAPLUS\EXAMPLE\E>	a	•
how Files in the Directory EX1.DAT	Cild Desired Current Drive Cild Desired Current Path Ct. SMAP TUNAPLUS EXAMPLE EXI Temp	<u> </u>
Create new folder under current pa Add current path to the combo box	h: New_Folder_Name directory list	OK Cancel

3.2 RUN Menu

Once you have prepared the input file according to Section 4, you are ready to execute TUNA Plus main-processing program by selecting Execute.

RUN Menu has the following Sub Menus; Text Editor, Pre Execute, and Execute.

TI 🖲	UNA plus			
Run	Plot	Setup	Exit	
	Text Editor			
	PreExecute			
	Execute			

TEXT EDITOR is used to create or modify the input file using Notepad.

PRE EXECUTE is used either to check the input file or to generate plotting information files. **PRE EXECUTE** is especially useful when you want to check input data to see whether there is any input error. It is also useful when you have finished **EXECUTE** but you want to add or modify the Post File for plot. In this case, you edit the Post File as you want, run **PRE EXECUTE** and then run post-processing programs in **PLOT** menu.

EXECUTE executes TUNA Plus main-processing program.

TUNA Plus Output Files

Once you execute TUNA Plus, generally you can obtain following output files: CONTSS.DAT Contains stresses/strains in continuum element

BEAMSF.DAT Contains section forces in beam element

TRUSS.DAT Contains stresses/strains in truss element

DISPLT.DAT Contains nodal displacements

It should be noted that all of your output files are saved in the Working Directory that you specified at the beginning.

TUNA Plus Graphical Output

TUNA Plus Post-processing programs can generate the following graphical output:

- Finite element mesh
- Deformed shape
- Principal stress distribution
- Section forces in beam element
- Extreme fiber stresses/strains in beam elements
- Axial force/stress/strain in truss element
- Contours of stresses, strains and factor of safety
- Time histories of displacements

Graphical output can be followed by running RESULT from PLOT Menu.

PLOT is to show graphically Computed Result.	TUNA plus
Once you finished executing TUI need to run post-processing pro results.	NA Plus main-processing program, you ograms to show graphically numerical
PLOT Menu contains PLOT-XY and PLOT-2D	Result Menu Select Plotting Program © PLOT XY © PLOT 2D

PLOT-XY plots time histories of displacements at specified locations. Refer to PLOT-XY User's Manual in Section 13 in SMAP-S2 Manual

PLOT-2D plots contours of continuum stresses, beam section forces, truss axial force/stress/strain, principal stress vectors, and deformed shapes. Refer to PLOT-2D User's Manual in Section 14 in SMAP-S2 Manual.

Note: When you first plot results, do not check the check box in Skip Data Processing. When you replot results, however, you can check the check box to skip intermediate data processing. This will save time and keep modified output data.

Running Programs **3-7**

3.4 SETUP Menu

You need to run SETUP Menu

- To specify TUNA Plus main-processing program module.
- To adjust scales of graphical outputs from PLOT-XY and PLOT-2D.

SETUP Menu has three Sub Menus; General, PLOT-XY and PLOT-2D

Run Plot	Setup	Exit	
	GENE	RAL	
	PLOT	XY	
	PLOT	2D	

3.4.1 General Setup

General Setup has five different items; Program Execution, Program Module, Screen Display, Layout Unit, and Working Directory.

Auto	C Manual
Program Module	
C 32 Bit Debug	32 Bit Release
Screen Display	
○ 640 x 480	1024 x 768
○ 800 × 600	C 1280 x 1024
Layout Unit for PLOT2D,	PLOT3D and PLOTXY
Centimeter	C Inch
Working Directory	
Browse	<u>O</u> K Cancel

3-8 Running Programs

Program Execution has two options; Auto and Manual. For Manual Execution, refer to Section 3.5 in User's Manual.

Program Module has two options. 32 Bit Debug and 32 Bit Release. Debug program modules run slower but gives more detailed information when run time errors occur. For most cases, 32 Bit Release is recommended.

Screen Display has four options; 640x480, 800x600, 1024x768, and 1280x1024. This will affect the size of child window in PLOT-XY and PLOT-2D.

Layout Unit is used for PLOT-XY and PLOT-2D. You can select either Centimeter or Inch in specifying plot scales and dimensions.

Working Directory is to change the current working directory. When you click the Browse button, Working Directory dialog will be shown so that you can select new directory.

3.4.2 PLOT-XY Setup

PLOT-XY Setup is mainly used to specify scales and dimensions of post processing program PLOT-XY. It has six different items; Drawing Size, Margins, Line Thickness, Character Size, Line Type, and Plotting Program.

Drawing Size Width of Legend Bi Range: 1.5 - 3.0 Horizontal Length Vertical Length	ox 3. Cm 30. Cm 23. Cm
Margins Left 2.54 Top 2.54	Cm Right 2.54 Cm Cm Bottom 5. Cm
- Line Thickness	
 Standard 	C Doubled C Tripled
- Character Size For Nu	mbers and Titles
 Standard 	C Small C Large
Line Type	
C Symbol only	C Line I ine with Symbol
C Default in C:\Sr	map\Ct\Ctdata\CURVE.TIT
– Plotting Program –	
 Smap Results b 	by PLOT XY C Smap Results by EXCEL
C Smap Results b	by PLOT XY or EXCEL
OK	Cancel
	Canobi

3-10 Running Programs

Drawing Size controls the size of output. Once you specify Legend Box Width, Horizontal and Vertical Length, you can click **View** button to see the scaled layout.

Margins is used to shift the drawing area. Left margin is the distance from the left edge of printer page to the left frame line. In the similar way, you can specify Top, Right, and Bottom margins.

Line Thickness specifies the thickness of lines. This option is not used.

Character Size for Numbers and Titles specifies the size of characters for numbers and titles. It has three options; Standard, Small, and Large.

Line type is used to specify default line type and has four options; Symbol only, Line, Line with Symbol, and Default in C:\Smap \Ct \Ctdata \Curve.tit.

Plotting Program is used to specify default program to plot Smap results. It has three options; PLOT-XY, EXCEL, and PLOT-XY or EXCEL. Last option is to select either PLOT-XY or EXCEL at the time you plot results.

3.4.3 PLOT-2D Setup

PLOT-2D Setup is mainly used to specify scales and dimensions of post processing program PLOT-2D. It has six different items; Drawing Size, Margins, Line Thickness, Numeric Character Size, Scale and Block Option. The first four items are much similar to those described in PLOT-XY Setup.

Scale specifies Maximum Displacement Length, Maximum Principal Stress Length, Maximum Beam Section Force Length, and Maximum Truss Force/Stress Length, which will be shown on PLOT-2D.

Block Option specifies options to generate either PRESMAP Output or Block Diagram. This option is not available for TUNA Plus.

Drawing Size		C	
Range: 3.0 - 6.0	6.	- Cm	View
Horizontal Length	32.	Cm	
Vertical Length	20.	Cm	
Margins			
Left 2.54	Cm Right	2.54	Cm
Top 3.5	Cm Bottom	1.5	Cm
Line Thickness			
Standard	C Doubled	C Tripled	
Numeric Character Size			
Standard	C Small	C Large	
Scale			
Maximum Displacemen	it Length	1.4	Cm
Maximum Principal Stre	ess Length	1.04	Cm
Maximum Beam Sectio	n Force Length	0.76	Cm
Maximum Truss Force/	'Stress Length	0.38	Cm
	2	<u>пк</u> [Cancel

3.5 Manual Procedure to Run TUNA Plus

Occasionally, you need to execute TUNA Plus main-processing program manually to see what is going on each step, specially when terminated due to some errors.

Method 1

- 1. Select Setup -> General -> Manual in Program Execution
- 2. Select Run -> Execute
- 3. Select TUNA Plus input file when displaying file open dialog
- 4. Now TUNA Plus is running on Windows Command Line
- 5. Type Enter key to continue to next step or Control C to stop

Method 2

- 1. Select CMD and go to Working Directory
- Change to Temp sub directory Create Temp sub directory if not existing.
 - Type MD Temp

Then change to this sub directory.

Type CD Temp

Now, the files in the Working Directory can be accessed by prefixing

"..\" to the file name.

- 3. Type C:\Smap\Ct\Ctbat\TUNAPLUS.bat
- 4. Type ... EX1.Dat to access input file in Working Directory, for example
- 5. Type Enter key to continue to next step or Control C to stop

3.6 Debugging TUNA Plus Main-Processing Program
 Debug information would be helpful in the following cases: Having run time errors Extracting convergence Checking elapsed time
In order to get debug information, you need to modify the file "Smap_S2.dat" in the directory C:\Smap\Ct\Ctdata\Debug
1, 11, 1, 1, 1, 1, 100, 90 IDEBUG, NCLDEB, IOUTDEB, ICONVER, NELDEB, NO_MAX, NO_RESTART
This "DEBUG.DAT" file allows listing of status with elapsed time information while running main process of SMAP programs. This is the very useful features to see where it spends most time and where it stops.
<pre>IDEBUG = 0 : Do not print debug information. 1 : Print debug information. Refer to IOUTDEB. 2 : Print debug information in each individual files based on NO MAX and NO_RESTART and save in C:\SMAP\SMAPS2\DEBUG (NOT AVAILABLE)</pre>
NCLDEB : Ending cycle number. No printing debug information after NCLDEB.
<pre>IOUTDEB = 0 : Debug information on screen. 1 : Debug information on file, Smap_S2.deb in Working Directory\Temp</pre>
<pre>ICONVER = 0 : Do not print convergence information. 1 : Print the ratio of displacement increment to current displacement (DU/U)</pre>
<pre>NELDEB = -1 : Do not print element information in element</pre>
NO_MAX : Maximum number of individual files. Used for IDEBUG = 2.
NO_RESTART : Restart number for individual file once it reaches NO_MAX. Used for IDEBUG = 2.

4-2 Description of Input Data

Card Group	Input Data and Definitions		
1	1.1 TITLE TITLE Any t TITLE	itle (Max = 60 characters) will be shown on the graphical output	
	1.2 IUNIT		
General Information See Figure 4.1	IUNIT Length 1 in 2 cm 3 m	ForcePressureUnit Weightlblb/in²lb/in³kgkg/cm²kg/cm³tonton/m²ton/m³	
	$\begin{array}{c} 3 & m \\ & \\ ^{1.3} \\ \text{MODEL, IGEN, IEX} \\ & \\ \text{MODEL} & = 1 \\ & = 2 \\ & = 3 \\ & = 4 \\ \\ & \\ \text{IGEN} & = 0 \\ & = 1 \\ & \\ & \\ & \\ \text{IGEN} & = 0 \\ & \\ & \\ & \\ \text{IGEN} & = 0 \\ & \\ & \\ & \\ \text{IGEN} & = 0 \\ & \\ & \\ & \\ & \\ \text{IGEN} & = 0 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	tonton/m²ton/m³MESH, ILNCOUPL, IEXORDER, IRBPSingle tunnel. Half section Single tunnel. Full section Two tunnels. Symmetric Two tunnels. UnsymmetricLine contour plot Color-filled contour plot Smooth color-filled contour plotNo user supplied meshLining coupled with surrounding rockBuilt-in excavation order User specified excavation orderRock bolt placed during soft shotcrete Rock bolt placed during hard shotcrete	
	= 2	ROCK DOIT NOT Placed	

Card Group	Input Data and Definitions		
1	1.4		
	Excavation Order		
	If IEXORDER = 0, go to next Card Group 2		
General Information	$\begin{array}{llllllllllllllllllllllllllllllllllll$		
	IEZ _i Excavation order number for i th zone. See Figure 4.3 Ex, IEZ ₃ = 1 means that zone 3 is excavated first		
	Note For IEXORDER= 0, tunnel cores are excavated in the following order: 1. Upper core in right tunnel 2. Lower core in right tunnel 3. Upper core in left tunnel 4. Lower core in left tunnel		

Card Group	Input Data and Definitions					
2	2.1					
	MODE	EL = 1: HT, HL, W, DX, DY, NY = 2: HT, HL, W, DX, DY, NY = 3: HT, HL, W, WP, DX, DY, NY = 4: HT, HL, W, WP, HP, DX, DY, NY				
	HT	Tunnel depth				
-	HL	Depth from springline to bottom boundary				
Ire 4.	W	Horizontal distance from left to right boundary				
Analysis Boundary See Figur	WP	Horizontal distance from left tunnel center line to right tunnel center line				
	HP	Vertical distance from right tunnel springline to left tunnel springline. When HP is positive, left tunnel springline is above the right tunnel springline.				
	DX DY	Far-field horizontal element length Far-field vertical element length				
Tunnel	NY	Maximum number of elements in vertical direction				

Card Group	Input Data and Definitions			
soil / Rock Layer Information See Figure 4.1	^{3.1} NLAYER NLAYER	Total number of layers. Max = 10		
	3.2 LA` NLAYER PH Cards - L -	YERNO, H, GAMA, RKo, E, V, I [-m], C [s], T [sigc] 		
	LAYERNO H GAMA RKo E V PHI [-m] C [s] T [sigc]	Soil/rock layer number Thickness of soil/rock layer Unit weight Coefficient of earth pressure at rest Young's modulus Poisson's ratio Internal friction angle (°) Cohesion Tensile strength Program takes absolute value of T as tensile strength. For negative value of T,		
	Note:	crack is considered. If a negative sign is prefixed to the value of PHI, program assumes Hoek and Brown material model. For m, s, and sigc, refer to SMAP-S2 User's Manual Page 4-25		

4-6 Description of Input Data

Card Group			Input Data and Definitions		
3	^{3.3.1} NATLAYER NATLAYER		Number of additional top soil/rock layers. Maximum = 5.		
	If NATLAYER = 0, go to Card Group 3.4				
Additional Top Soil / Rock Layers	For Each Specified Layer	3.3.2.1 GAMA, GAM RKo E V PHI C T	RKo, E, V, PHI, C, T A Unit weight Coefficient of earth pressure at rest Young's modulus Poisson's ratio Internal friction angle (°) Cohesion Tensile strength. See Note in Card 3.2		

Input Data and Definitions		
3.3.3		
NUMSXP		
NUMSXP		Number of specified x points. $Max = 100$
3.3.4	3.3.4.1	
	X _i , H _{i1} ,,	H _{i NATLAYER}
	X _i	X distance from left boundary
	H _{ij}	Height of j^{th} top layer at X_{i}
4.4		
igure		
ee F		
nt		
X Poi		
ach)		
or		
"		
	For Each X Point See Figure 4.4	3.3.3 NUMSXP NUMSXP 3.3.4 3.3.4 3.3.4 3.3.4 X _i , H _{i1} ,, X _i H _{ij}

Card Group	Input Data and Definitions		
3	3.4.1 NUSLAYER NUSLAYER Number of user specified soil/rock layers. Maximum = 10. If NUSLAYER = 0, go to Card Group 3.5.1 3.4.2		
User Specified Soil / Rock Layers	For Each Specified Layer	LAYERNO LAYERNO Layer number 3.4.3 X ₁ , Y ₁ , X ₂ , Y ₂ , X ₃ , Y ₃ , X ₄ , Y ₄ X ₁ , Y ₁ , X ₂ , Y ₂ , X ₃ , Y ₃ , X ₄ , Y ₄ X ₁ , Y ₁ X and Y coordinates defining soil/rock layer See Figure 4.5 Note: Original soil/rock material properties in this region will be replaced by the user specified properties provided in the next Card 3.4.4 3.4.4 GAMA, RKo, E, V, PHI [-m], C [s], T [sigc] For the description of parameters, refer to the Note in Card 3.2	

Card Group	Input Data and Definitions		
3	3.5.1 NUS	SXPD	
face Load	ſ	NUSXPD	Number of user specified x points for distributed surface load. Max = 100
User Specified Distributed Su	For Each X Point	3.5.2.1 X _i , q _i X _i q _i	X distance from left boundary Intensity of vertical distributed load at X _i See Figure 4.6

4-10 Description of Input Data

Card Group	Input Data and Definitions				
Shotcrete / Lining / Rock Bolt Material Property Data	3.6 Shotcrete Properties E, V, PHI, C, T, GAMA E Young's modulus V Poisson's ratio PHI Internal friction angle (°) C Cohesion T Tensile strength. See Note in Card 3.2 GAMA Unit weight				
	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Card Group	Input Data and Definitions				
--	---	--	--	--	--
3	3.9				
	Interface Properties				
(0	If ILNCOUPL = 1, go to next Card Group 4 <u>Elastic Modulus and Joint Thickness</u>				
IUDI	NM = 0 Linear elastic joint				
	= 2 Nonlinear joint				
Interface Between Shotcrete and Lining (For ILN	E Elastic Young's modulus G Elastic shear modulus t Joint thickness <u>Strength Parameters [Only for NM = 2]</u> C, φ C Cohesion φ Friction angle (°) <u>Normal Stress-Strain Relation [Only for NM = 2]</u> $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4, \sigma_1, \sigma_2, \sigma_3, \sigma_4$				
	ϵ_i, σ_i Pair of strain (ϵ_i) and stress (σ_i) to define normal stress-strain relation. Tension is positive				

4-12 Description of Input Data

Card Group	Input Data and Definitions
up for left tunnel when MODEL = 4)	4.0 ISTYPE, GR, GA ISTYPE = 1 Horseshoe shape tunnel section = 2 Egg shape tunnel section = 3 User defined tunnel section GR Growing rate for near-field element. Use GR = 1 GA Normalized mid length. Use GA = 0.5
Tunnel Dimension (Repeat this card grou	

Card Group		Input Data and Definitions
ion (Repeat this card group for the left tunnel when MODEL = 4)	4.1 For ISTY R ₁ , A ₁ , For ISTY NSEG.	$PE = 1 \text{ or } 2$ $R_{2}, A_{2}, R_{3}, A_{3}, R_{4}$ $PE = 3$ Source Serve Serve
	NSEG Cards	$\frac{\text{For Straight Line}}{0, X_{b}, Y_{b}, X_{e}, Y_{e}, T_{L}, A_{SI}, A_{SO}}$ $\frac{\text{For Circular Arc}}{R, X_{o}, Y_{o}, \theta_{b}, \theta_{e}, T_{L}, A_{SI}, A_{SO}}$
	R ₁ , R ₂ , I A ₁ , A ₂ , <i>I</i>	R_3 , R_4 Radius as shown in Figure 4.2a or 4.2b A_3 Angle (°) as shown in Figure 4.2a or 4.2b
	NSEG	Number of segments to define tunnel shape
	S _{HOR} S _{TR} S _{BR}	Arc length at boundary of upper and lower cores Arc length at midpoint between crown and springline Arc length at midpoint between invert and springline
	X _b , Y _b X _e , Y _e X _o , Y _o	BeginningX and Y coordinate of straight lineEndingX and Y coordinate of straight lineX and Y coordinate of circular arc orgin
mens	$\theta_{\rm b}$, $\theta_{\rm e}$	Beginning and ending angle (°) of circular arc
Tunnel Dii	T _L A _{SI} A _{SO}	Thickness of lining Area of inner reinforcing bar Area of outer reinforcing bar
	Note:	For ISTYPE = 1 $R_4 = 0$: Invert is flat $R_4 < 0$: Invert depth is given as absolute value of R_4

Card Group	Input Data and Definitions				
4	4.2				
~	INVSHOT, T_{s_i} INVLN, T_{L} , D_{I} , A_{sI} , D_{o} , A_{so} INVSHOT = -1. No shotcrete				
oup for left tunnel when MODEL = 4	= 0 No shotcrete at invert = 1 Full shotcrete				
	T _s Thickness of shotcrete				
	INVLN = -1 Lining is not placed = 0 Lining is placed before tunnel excavation = 1 Lining is placed after tunnel excavation				
	T _L Thickness of lining				
	D _I , Inner reinforcing bar cover depth A _{SI} , Inner reinforcing bar area				
is card gr	D _o , Outer reinforcing bar cover depth A _{so} Outer reinforcing bar area				
Repeat thi	^{4.3} NUMRB, L _{RB} , L _{SPACING} , T _{SPACING} , NSRB				
Innel Dimension (NUMRB Number of rock bolts Example: NUMRB = 11 in Figure 4.2				
	Length of rock boltL_{SPACING}Rock bolt spacing in longitudinal directionT_{SPACING}Rock bolt spacing in tangential direction				
Ĭ	NSRB Number of elements between rock bolts Use NSRB = 2 or 3				

Description of Input Data 4-15

Card Group	Input Data and Definitions		
5	^{5.1} PSR, PAS	ir, resh	
lus Change	PSR	Percent of stress release before placing soft shotcrete or rock bolts	
	PASR	Percent of additional stress release from soft to hard shotcrete	
Excavation Stress Release and Shotcrete Moduli	RESH	Ratio of the Young 's modulus in soft shotcrete to the Young 's modulus in hard shotcrete	

4-16 Description of Input Data

Card Group	Input Data and Definitions				
6	6.1				
	LDTYPE				
	LDTYPE = 0 Do not perform lining analysis = 1 Perform lining analysis				
	If LDTYPE = 0, rest of cards are ignored				
alysis					
g An	6.2				
Linin	Ground Water Pressure				
s for	LGWINV, NWPSTEP, DGW, GAMAW				
al Loads	LGWINV = 0 Ground water pressure is not included = 1 Ground water pressure on lining invert				
Extern	NWPSTEP Number of load steps for water pressure. Max=400. If NWPSTEP = 0, water pressure is not considered				
	DGW Depth of ground water table from ground surface				
	GAMAW Unit weight of water				

Card Group	Input Data and Definitions				
	6.3.1 Loose LSDA	6.3.1 <u>Loosening Load</u> LSDADD, NLDSTEP, HPRES, VPRES			
sis	LSDADD = 0 Not included = 1 Included				
	NLDSTEP Number of load steps for loosening load. Max=400 If NLDSTEP = 0, loosening load is not considered				
ing Analy	HPRESHorizontal pressure due to loosening loadVPRESVerticalpressure due to loosening load				
External Loads for Linir	Additional Vertical Loosening Load	$\begin{array}{l} {}^{6.3.2.1} \\ \hline \\ \hline \\ Additional Vertical Loosening Load for Right Tunnel \\ If LSDADD = 0, skip this card \\ \hline \\ \\ \Delta X_{v1}, \ \\ \Delta X_{v2}, \ \\ Q_{v1}, \ \\ Q_{v0}, \ \\ Q_{v2} \\ \hline \\ \\ \Delta X_{v1}, \ \\ \Delta X_{v2} \\ X \ \\ distance of left and right end of \\ distributed load, measured from crown \\ \hline \\ Q_{v1}, \ \\ Q_{v0}, \ \\ Q_{v2} \\ \hline \\ Intensity of vertical distributed load \\ at left end, center, and right end \\ See Figure 4.7 \\ \hline \\ $			

4-18 Description of Input Data

Card Group		Input Data and Definitions		
6	^{6.4} Primary Support D LPSDEG, REDH	egradation		
nalysis	LPSDEG = 0 = 1	No primary support degradation Include deactivation of rock bolt and degradation of shotcrete modulus		
	REDH Ratio of Young's modulus in degraded shotcrete to the Young's modulus in hard shotcrete			
or Lining A	^{6.5} Subgrade and Lining Property If ILNCOUPL = 0, skip this card			
ids fc	SUBGK, ITSPR, NUMSJ			
l Loa	SUBGK	Coefficient of subgrade reaction		
Externa	ITSPR = 0 = 1	No tangential spring Add tangential spring		
	NUMSJ	Number of segment joints Available for circular shape of MODEL 2		
	^{6.6} Joint Locations If NUMSJ = 0, skip this card			
	AJ ₁ , AJ ₁ ,, AJ _{NUMSJ}			
	AJ _i Ang	le (degrees) from crown top (AJ $_i \le 180$)		

Description of Output Data Program TUNA Plus automatically generates graphical outputs once

the calculation of tunnel analysis is completed. Graphical outputs once from tunnel excavation and lining analysis are summarized in Tables 5.1 and 5.2 respectively. These graphical outputs can be obtained by executing PLOT-2D in PLOT Menu. Sign conventions and notations used for section forces and strains in the liner are shown in Figure 5.1.

Graphical outputs of displacement history at key locations shown in Figure 5.2 can also be obtained by executing PLOT-XY in PLOT Menu.

Once the calculation of TUNA Plus is finished, you can obtain following three text files:

- STEP.LST Contains listing of major computational steps
- PLTDS.LST Contains listing of generated graphical outputs which are summarized in Tables 5.1 and 5.2. To get this file, select PLOT-2D in PLOT Menu.
- PLTXY.LST Contains listing of generated displacement history graphical outputs. To get this file, select PLOT-XY in PLOT Menu.

Table 5.1 Graphical output from tunnel excavation analys	phical output from tunnel excavation analys	SIS
--	---	-----

Plot Descriptions
Finite Element Mesh
Ground Surface Settlement
Tunnel Deformed Shape
Principal Stress Distribution in Surrounding Rock
Principal Stress Distribution in Shotcrete
Contours of Safety Factor in Surrounding Rock
Axial Stress in Rock Bolts

Table 5.2 Graphical output from tunnel lining analysis

Plot Descriptions
Lining Deformed Shape
Bending Moment
Thrust
Shear
Inner Extreme Fiber Stress
Outer Extreme Fiber Stress
Inner Reinforcing Bar Stress
Outer Reinforcing Bar Stress

5-4 Description of Output Data

Problem Number	File Name	Run Time (min) PIII 850 MHZ	Description
1	EX1.DAT	0.47	Half section of single tunnel with reinforced concrete liner [MODEL 1]
2	EX2.DAT	4.78	Full section of single tunnel with reinforced concrete liner [MODEL 2]
3	EX3.DAT	5.42	Symmetric two tunnels with reinforced concrete liner [MODEL 3]
4	EX4.DAT	8.03	Unsymmetric two tunnels with reinforced concrete liner [MODEL 4]
5	EX5.DAT	0.88	Inclined top soil layer [Problem No. 2]
6	EX6.DAT	0.82	Inclined rock layer between soft and hard rocks [Problem No. 2]
7	EX7.DAT	0.72	Distributed surface load [Problem No. 5]
8	EX8.DAT	4.42	User defined tunnel shapes [MODEL 4]
9	EX9.DAT	2.08	Box tunnel liner subjected to full excavation load [Problem No. 8]

Table 6.1 List of example problems

6.1 Example 1

Example 1 represents half section of a single tunnel as schematically shown in Figure 6.2.

A typical NATM tunnel shape is chosen here to be analyzed using program TUNA Plus. Geometric parameters related to tunnel shape, rock bolts, shotcrete, and liner are given in Figure 6.1. Geological profile, tunnel depth, and analysis boundaries are specified in Figure 6.2. Material properties of soil/rock layers and supports are summarized in Table 6.2.

As shown in Table 6.3, tunnel construction involves two major excavation stages; upper core excavation and lower core excavation. Each excavation stage is associated with three load steps; 50 % stress release, additional 25% stress release where soft shotcrete and rock bolts are installed, and the last 25% stress release where shotcrete is hardened. It should be noted that program TUNA Plus uses first two load steps to generate in situ K_0 stress state.

For lining analysis, reinforced concrete liner is considered with interface joint element between the liner and the surrounding medium. The interface joint properties are set to allow separation when the tensile stress develops in the direction normal to the interface while full slippage is assumed along the interface.

For loads acting on the reinforced concrete liner, following four different load combinations are considered:

- 1. Weight
- 2. Weight+Water Pressure
- 3. Weight+Water Pressure+Loosening Load
- 4. Weight+Water Pressure+Loosening Load+Support Degradation

Ground water pressure is applied to the liner except the invert. As loosening load, a uniform vertical stress as shown in Table 6.3 is applied to liner. As support degradation, rock bolts are deactivated.

The input file EX1.DAT is listed in Table 6.4. Output file STEP.LST in Table 6.5 lists steps where major excavations take place and external lining loads are applied.

Graphical outputs from PLOT-2D are shown in Figures 6.3 to 6.47. Brief description of these plots are shown in the text output file PLTDS.LST in Table 6.6.

Displacement history graphical outputs from PLOT-XY are shown in Figures 6.48 to 6.51. Brief description of these plots are shown in the text output file PLTXY.LST in Table 6.7.

Material Type	Y [t/m ³]	K	E [t/m²]	V	φ [°]	C [t/m²]	T [t/m²]
Weathered Soil	1.90	0.50	2.00x10 ³	0.33	30	3	20
Weathered Rock	1.90	0.43	5.000x10 ³	0.30	35	30	30
Soft Rock	2.40	0.33	2.00x10 ⁴	0.25	40	70	40
Hard Rock	2.55	0.25	2.00x10⁵	0.20	45	100	50
Shotcrete (Soft)	2.40		0.50x10 ⁶	0.20	30	500	100
Shotcrete (Hard)	2.40		1.50x10 ⁶	0.20	30	500	100
Rock Bolt			2.10x10 ⁷				
Reinforced Concrete Lining	2.50		2.10x10 ⁶	0.20	30	500	300
Reinforcing Bar			2.10x10 ⁷	0.20			
Interface Joint			2.00x10 ⁵		5	0.001	0.02

Table 6.2 Material property

Table 6.3	Simulation of	construction	sequence
-----------	---------------	--------------	----------

Step	Construction State	Descriptions	
1,2		In Situ K $_{\circ}$ State	
3		50 % Stress Relief	
4		75 % Stress Relief Soft Shotcrete Rock Bolt	Upper Core Excavation
5		100 % Stress Relief Hard Shotcrete Rock Bolt	

Step	Construction State	Descriptions		
6		50% Stress Relief		
7		75% Stress Relief Soft Shotcrete Rock Bolt	Lower Core Excavation	
8		100% Stress Relief Hard Shotcrete Rock Bolt		

Table 6.3Simulation of construction sequence (Continued)

Step	Construction State	Descriptions
9		Lining Subjected to: Weight
12	₹ 11.94 m	Lining Subjected to: Weight + Water Pressure
15		Lining Subjected to: Weight + Water Pressure + Loosening Load
16	∑ 10 t/m² 11.94 m	Lining Subjected to: Weight + Water Pressure + Loosening Load + Rock Bolt Deactivation

 Table 6.3
 Simulation of construction sequence (Continued)

Table 6.4 Listing of input file EX1.DAT

```
*
* GENERAL INFORMATION
*
* CARD 1.1
* TITLE
 EXAMPLE PROBLEM ( MODEL 1 )
*
* CARD 1.2
* IUNIT
   3
*
* CARD 1.3
* MODEL IGEN IEXMESH ILNCOUPL IEXORDER IRBP
1 0 0 0 0 0
*
* TUNNEL ANALYSIS BOUNDARY
*
* CARD 2.1
* HT HL W DELTAX DELTAY NDYMAX
21.94 30. 20. 2.0 2.0 40
*
* SOIL / ROCK LAYER INFORMATION
* CARD 3.1
* NLAYER
   4
* CARD 3.2

        H
        GAMA
        RKO
        E
        V
        PHI

        4.2
        1.9
        0.5
        2000.
        0.33
        30.

        4.3
        1.9
        0.43
        5000.
        0.30
        35.

        3.5
        2.4
        0.33
        20000.
        0.25
        40.

        39.94
        2.55
        0.25
        200000.
        0.20
        45.

* LAYERNO H
                                                                                               С
                                                                                                          Т
   1
                                                                                               3.
                                                                                                          20.

      30.
      30.

      70.
      40.

      100.
      50.

    2
    3
   4
*
* ADDITIONAL TOP SOIL / ROCK LAYER
*
* CARD 3.3.1
* NATLAYER
  0
*
* USER SPECIFIED SOIL / ROCK LAYER
* CARD 3.4.1
* NUSLAYER
  0
*
```

```
Example 1 6-9
```

```
*
* USER SPECIFIED DISTRIBUTED SURFACE LOAD
*
* CARD 3.5.1
* NUSXPD
 0
*
* USER SPECIFIED DISTRIBUTED SURFACE LOAD
* CARD 3.5.1
* NUSXPD
0
*
* SHOTCRETE PROPERTIES
*
* CARD 3.6
* E V PHI
1.5E+06 0.2 30.
                          C T GAMA
500. 100. 2.4
*
* LINING PROPERTIES
*
* CARD 3.7
* E V PHI C T GAMA ER VR
2.1E+06 0.2 30. 500. 300. 2.5 2.1E+07 0.2
*
* ROCK BOLT PROPERTIES
* CARD 3.8
* A WL E STRSI SIGMAY EF
0.000491 0.00383 2.1E+07 0.0 2.3E+04 1.0
*
* INTERFACE PROPERTIES BETWEEN SHOTCRETE AND LINING
*
* CARD 3.9
* CARD 3.9
* NM E G t
2 200000.2.0 0.001
2
* C
* C PHI
0.001 5.0
* E1 E2
-1.0 0.0
                 E3 E4 S1 S2
1.0E-7 1.0 -200000. 0.0
                                                     S3 S4
2.E-02 2.E-02
-1.0
* TUNNEL DIMENSION
* CARD 4.0
* ISTYPE GR GA
1 1.0 0.5
```

```
*
* CARD 4.1
* R1 A1 R2 A2 R3 A3 R4
5.24 60. 4.24 30. 9.86 19.781 23.86

      5.24
      60.
      4.2.

      * CARD 4.2
      *
      INVSHOT TS
      INVLN

      * INVSHOT TS
      INVLN
      TL
      DI
      ASI
      DO
      ASO

      0
      0.15
      1
      0.3
      0.05
      0.0022
      0.05
      0.0022

* CARD 4.3
* NUMRB LRB LSPACING TSPACING NSRB
11 3.0 1.35 1.2 2
*
* EXCAVATION STRESS RELEASE AND SHOTCRETE MODULUS CHANGE
*
* CARD 5.1
* PSR PASR
50. 25.
                           RESH
0.33
*
* EXTERNAL LOADS FOR LINING ANALYSIS
*
* CARD 6.1
* LDTYPE
  1
*
* WATER PRESSURE
* CARD 6.2
* LGWINV NWPSTEP DGW GAMAW
0 3 10. 1.0
*
* LOOSENING LOAD
* CARD 6.3.1
* LSDADD NLDSTEP HPRES VPRES
0 3 0.0 10.0
*
* PRIMARY SUPPORT DEGRADATION
*
* CARD 6.4
* LPSDEG REDH
1 1.0
*
* END OF DATA
```

Table 6.5 Listing of text output file STEP.LST

STEP NO	DESCRIPTIONS
5	Excavation of Upper Core
8	Excavation of Lower Core
9	Lining Subjected to:
12	Weight
	Lining Subjected to: Weight
15	Water Pressure
	Lining Subjected to: Weight
	Water Pressure Loosening Load
16	Lining Subjected to: Weight Water Pressure Loosening Load Rock Bolt Deactivation & Shotcrete Degradation

Table 6.6	Listing	of text	output f	file P	LTDS.LST

PLOT NO	TITLE
1	FINITE ELEMENT MESH EXAMPLE PROBLEM (MODEL 1)
2	DEFORMED SHAPE AT LOAD STEP = 5 EXAMPLE PROBLEM (MODEL 1)
3	DEFORMED SHAPE AT LOAD STEP = 8 EXAMPLE PROBLEM (MODEL 1)
4	DEFORMED SHAPE AT LOAD STEP = 5 EXAMPLE PROBLEM (MODEL 1)
5	DEFORMED SHAPE AT LOAD STEP = 8 EXAMPLE PROBLEM (MODEL 1)
6	PRINCIPAL STRESS DISTRIBUTION AT LOAD STEP = 5 EXAMPLE PROBLEM (MODEL 1)
7	PRINCIPAL STRESS DISTRIBUTION AT LOAD STEP = 8 EXAMPLE PROBLEM (MODEL 1)
8	PRINCIPAL STRESS DISTRIBUTION AT LOAD STEP = 5 EXAMPLE PROBLEM (MODEL 1)
9	PRINCIPAL STRESS DISTRIBUTION AT LOAD STEP = 8 EXAMPLE PROBLEM (MODEL 1)
10	Contours of Safety Factor AT LOAD STEP = 5 EXAMPLE PROBLEM (MODEL 1)
11	Contours of Safety Factor AT LOAD STEP = 8 EXAMPLE PROBLEM (MODEL 1)

12	AXIAL STRESS AT LOAD STEP = 5 EXAMPLE PROBLEM (MODEL 1)
13	AXIAL STRESS AT LOAD STEP = 8 EXAMPLE PROBLEM (MODEL 1)
14	DEFORMED SHAPE AT LOAD STEP = 9 EXAMPLE PROBLEM (MODEL 1)
15	DEFORMED SHAPE AT LOAD STEP = 12 EXAMPLE PROBLEM (MODEL 1)
16	DEFORMED SHAPE AT LOAD STEP = 15 EXAMPLE PROBLEM (MODEL 1)
17	DEFORMED SHAPE AT LOAD STEP = 16 EXAMPLE PROBLEM (MODEL 1)
18	BENDING MOMENT AT LOAD STEP = 9 EXAMPLE PROBLEM (MODEL 1)
19	THRUST AT LOAD STEP = 9 EXAMPLE PROBLEM (MODEL 1)
20	SHEAR AT LOAD STEP = 9 EXAMPLE PROBLEM (MODEL 1)
21	INNER EXTREME FIBER STRESS AT LOAD STEP = 9 EXAMPLE PROBLEM (MODEL 1)
22	OUTER EXTREME FIBER STRESS AT LOAD STEP = 9 EXAMPLE PROBLEM (MODEL 1)

23	INNER REINFORCING BAR STRESS AT LOAD STEP = 9 EXAMPLE PROBLEM (MODEL 1)	
24	OUTER REINFORCING BAR STRESS AT LOAD STEP = 9 EXAMPLE PROBLEM (MODEL 1)	
25	BENDING MOMENT AT LOAD STEP = 12 EXAMPLE PROBLEM (MODEL 1)	
26	THRUST AT LOAD STEP = 12 EXAMPLE PROBLEM (MODEL 1)	
27	SHEAR AT LOAD STEP = 12 EXAMPLE PROBLEM (MODEL 1)	
28	INNER EXTREME FIBER STRESS AT LOAD STEP = 12 EXAMPLE PROBLEM (MODEL 1)	
29	OUTER EXTREME FIBER STRESS AT LOAD STEP = 12 EXAMPLE PROBLEM (MODEL 1)	
30	INNER REINFORCING BAR STRESS AT LOAD STEP = 12 EXAMPLE PROBLEM (MODEL 1)	
31	OUTER REINFORCING BAR STRESS AT LOAD STEP = 12 EXAMPLE PROBLEM (MODEL 1)	
32	BENDING MOMENT AT LOAD STEP = 15 EXAMPLE PROBLEM (MODEL 1)	
33	THRUST AT LOAD STEP = 15 EXAMPLE PROBLEM (MODEL 1)	
Example	1 6	-15
---------	-----	-----
---------	-----	-----

34	SHEAR AT LOAD STEP = 15 EXAMPLE PROBLEM (MODEL 1)
35	INNER EXTREME FIBER STRESS AT LOAD STEP = 15 EXAMPLE PROBLEM (MODEL 1)
36	OUTER EXTREME FIBER STRESS AT LOAD STEP = 15 EXAMPLE PROBLEM (MODEL 1)
37	INNER REINFORCING BAR STRESS AT LOAD STEP = 15 EXAMPLE PROBLEM (MODEL 1)
38	OUTER REINFORCING BAR STRESS AT LOAD STEP = 15 EXAMPLE PROBLEM (MODEL 1)
39	BENDING MOMENT AT LOAD STEP = 16 EXAMPLE PROBLEM (MODEL 1)
40	THRUST AT LOAD STEP = 16 EXAMPLE PROBLEM (MODEL 1)
41	SHEAR AT LOAD STEP = 16 EXAMPLE PROBLEM (MODEL 1)
42	INNER EXTREME FIBER STRESS AT LOAD STEP = 16 EXAMPLE PROBLEM (MODEL 1)
43	OUTER EXTREME FIBER STRESS AT LOAD STEP = 16 EXAMPLE PROBLEM (MODEL 1)
44	INNER REINFORCING BAR STRESS AT LOAD STEP = 16 EXAMPLE PROBLEM (MODEL 1)
45	OUTER REINFORCING BAR STRESS AT LOAD STEP = 16 EXAMPLE PROBLEM (MODEL 1)

Table 6.7 Listing of text output file PLTXY.LST

PLOT NO	TITLE
1	DISPLACEMENT HISTORY AT LOCATION : 1 AT NODE 443
2	DISPLACEMENT HISTORY AT LOCATION : 2 AT NODE 1
3	DISPLACEMENT HISTORY AT LOCATION : 3 AT NODE 233
4	DISPLACEMENT HISTORY AT LOCATION: 4 AT NODE 14

MODEL= 1 Single Tunnel [Half Section]

Example 1 6-19

Example 1 6-25

6.2 Example 2

Example 2 represents full section of a single tunnel as schematically shown in Figure 6.53.

A typical NATM tunnel shape is chosen here to be analyzed using program TUNA Plus. Geometric parameters related to tunnel shape, rock bolts, shotcrete, and liner are given in Figure 6.52. Geological profile, tunnel depth, and analysis boundaries are specified in Figure 6.53. Material properties of soil/rock layers and supports are summarized in Table 6.2.

As shown in Table 6.8, tunnel construction involves four major excavation stages; upper left core excavation, upper right core excavation, lower left core excavation, and lower right core excavation. Each excavation stage is associated with three load steps; 50% stress release, additional 25% stress release where soft shotcrete and rock bolts are installed, and the last 25% stress release where shotcrete is hardened. It should be noted that program TUNA Plus uses first two load steps to generate in situ K_o stress state.

For lining analysis, reinforced concrete liner is considered with interface joint element between the liner and the surrounding medium. The interface joint properties are set to allow separation when the tensile stress develops in the direction normal to the interface while full slippage is assumed along the interface.

For loads acting on the reinforced concrete liner, following four different load combinations are considered:

- 1. Weight
- 2. Weight + Water Pressure
- 3. Weight + Water Pressure + Loosening Load
- 4. Weight + Water Pressure + Loosening Load + Support Degradation

Ground water pressure is applied to the liner except the invert. As loosening load, an unsymmetric triangular vertical stress as shown in Table 6.8 is applied to the liner. As support degradation, rock bolts are deactivated.

The input file EX2.DAT is listed in Table 6.9. Text output file STEP.LST in Table 6.10 lists steps where major excavations take place and external lining loads are applied.

Figures 6.54 to 6.68 show PLOT-2D graphical outputs at the completion of excavation and at the last load step for lining. Brief description of these plots are shown in the text output file PLTDS.LST in Table 6.11.

Figures 6.69 to 6.71 show PLOT-XY graphical outputs at tunnel crown and springline. Brief description of these plots are shown in the text output file PLTXY.LST in Table 6.12.

Step	Construction State	Descriptions	
1,2		In Situ K。State	
3		50% Stress Relief	xcavation
4		75% Stress Relief Soft Shotcrete Rock Bolt	Upper Left Core E
5		100% Stress Relief Hard Shotcrete Rock Bolt	

Table 6.8 Simulation of construction sequence

Step	Construction State	Descriptions	
6		50% Stress Relief	
7		75% Stress Relief Soft Shotcrete Rock Bolt	oper Right Core Excavation
8		100% Stress Relief Hard Shotcrete Rock Bolt	Ū

 Table 6.8
 Simulation of construction sequence (Continued)

6-72 Example 2

Step	Construction State	Descriptions	
9		50% Stress Relief	Ę
10	-	75% Stress Relief Soft Shotcrete Rock Bolt	Lower Left Core Excavatio
11		100% Stress Relief Hard Shotcrete Rock Bolt	

Table 6.8 Simulation of construction sequence (Continued)

Step	Construction State	Descriptions	
12		50% Stress Relief	
13	-	75% Stress Relief Soft Shotcrete Rock Bolt	er Right Core Excavation
14		100% Stress Relief Hard Shotcrete Rock Bolt	Гоме

 Table 6.8
 Simulation of construction sequence (Continued)

6-74 Example 2

Step	Construction State	Descriptions	
15		Lining Subjected to: Weight	
18		Lining Subjected to: Weight + Water Pressure	ng Analysis
21	20 t/m² 9.94 m	Lining Subjected to: Weight + Water Pressure + Loosening Load	Lini
22	20 t/m² 9.94 m	Lining Subjected to: Weight + Water Pressure + Loosening Load + Rock Bolt Deactivation	

 Table 6.8
 Simulation of construction sequence (Continued)

Table 6.9 Listing of input file EX2.DAT

```
* GENERAL INFORMATION
* CARD 1.1
* TITLE
 EXAMPLE PROBLEM ( MODEL 2 )
* CARD 1.2
* IUNIT
 3
*
* CARD 1.3
* MODEL IGEN IEXMESH ILNCOUPL IEXORDER IRBP
2 0 0 0 1 0
*
* CARD 1.4
* IEZ1 IEZ2 IEZ3 IEZ4
 2 4 1 3
*
* TUNNEL ANALYSIS BOUNDARY
*
* CARD 2.1
* HT HL W DELTAX DELTAY NDYMAX
19.94 30. 60. 2.0
                             2.0
                                          40
* SOIL / ROCK LAYER INFORMATION
*
* CARD 3.1
* NLAYER
  4
* CARD 3.2
                                          V PHI C T
* LAYERNO H
                   GAMA RKO E

      4.2
      1.9
      0.5
      2000.
      0.33
      30.

      4.3
      1.9
      0.43
      5000.
      0.30
      35.

      3.5
      2.4
      0.33
      20000.
      0.25
      40.

                                                        3. 20.
30. 30.
 1
  2
                                                         70. 40.
 3
             39.94 2.55 0.25 200000. 0.20 45.
                                                         100. 50.
 4
*
* ADDITIONAL TOP SOIL / ROCK LAYER
* CARD 3.3.1
* NATLAYER
 0
*
* USER SPECIFIED SOIL / ROCK LAYER
* CARD 3.4.1
* NUSLAYER
  0
```

6-76 Example 2

```
* USER SPECIFIED DISTRIBUTED SURFACE LOAD
*
* CARD 3.5.1
* NUSXPD
0
*
* SHOTCRETE PROPERTIES
*
* CARD 3.6
 E V PHI
1.5E+06 0.2 30.
                       C T GAMA
500. 100. 2.4
* E
*
* LINING PROPERTIES
*
* CARD 3.7
         V PHI
* E V PHI C T GAMA ER VR
2.1E+06 0.2 30. 500. 300. 2.5 2.1E+07 0.2
* ROCK BOLT PROPERTIES
*
* CARD 3.8
* A WL E STRSI SIGMAY Ef
0.000491 0.00383 2.1E+07 0.0 2.3E+04 1.0
* A
*
* INTERFACE PROPERTIES BETWEEN SHOTCRETE AND LINING
* CARD 3.9
* NM E G
         E G t
200000.2.0 0.001
2
* C
          PHI
 0.001
         5.0
* E1 E2 E3 E4 S1 S2 S3 S4
-1.0 0.0 1.0E-7 1.0 -200000. 0.0 2.E-02 2.E-02
* El
* TUNNEL DIMENSION
*
* CARD 4.0
* ISTYPE GR GA
1 1.0 0.5
* CARD 4.1
            R2 A2 R3 A3 R4
6.24 30. 11.86 21.781 25.86
* R1 A1
7.24 60.
* CARD 4.2
* INVSHOT TS INVLN TL DI ASI DO ASO
0 0.20 1 0.4 0.05 0.0033 0.05 0.0033
* CARD 4.3
* NUMRB LRB LSPACING TSPACING NSRB
 21
        3.0 1.35 1.2
                                     2
```

```
* EXCAVATION STRESS RELEASE AND SHOTCRETE MODULUS CHANGE
*
* CARD 5.1
* PSR PASR RESH
50. 25. 0.33
*
* EXTERNAL LOADS FOR LINING ANALYSIS
* CARD 6.1
* LDTYPE
 1
*
* WATER PRESSURE
*
* CARD 6.2
* LGWINV NWPSTEP DGW GAMAW
0 3 10. 1.0
*
* LOOSENING LOAD
* CARD 6.3.1
* LSDADD NLDSTEP HPRES VPRES
       3 0.0 0.0
1
*
* ADDITIONAL VERTICAL LOOSENING LOAD
* CARD 6.3.2.1
* DXv1 DXv2
0.0 7.24
                Qv1
0.0
                       Qvo Qv2
20. 0.0
*
* PRIMARY SUPPORT DEGRADATION
* CARD 6.4
* LPSDEG REDH
1 1.0
* SUBGRADE REACTION FOR ILNCOUPL = 1
*
* CARD 6.4
* SUBGK
* 1.0E+05
*
* END OF DATA
```

Table 6.10 Listing of text output file STEP.DAT

STEP NO	DESCRIPTIONS
5	Excavation of Unner Left Core
8	Excavation of Upper Eight Core
11	Excavation of Lower Left Core
14	Excavation of Lower Bight Core
15	Lining Subjected to:
1.8	Weight
10	Lining Subjected to: Weight
21	Water Pressure
	Lining Subjected to: Weight
	Water Pressure Loosening Load
22	Lining Subjected to:
	Weight Water Pressure
	Loosening Load Rock Bolt Deactivation &
	Shotcrete Degradation

Table 6.11 Partial listing of text output file PLTDS.LST

PLOT	NO	TITLE
1		FINITE ELEMENT MESH
		EXAMPLE PROBLEM (MODEL 2)
2		DEFORMED SHAPE
		AT LOAD STEP = 5
		EXAMPLE PROBLEM (MODEL 2)
3		DEFORMED SHAPE
		AT LOAD STEP = 8
		EXAMPLE PROBLEM (MODEL 2)
4		DEFORMED SHAPE
		AT LOAD STEP = 11
		EXAMPLE PROBLEM (MODEL 2)
5		DEFORMED SHAPE
		AT LOAD STEP = 14
		EXAMPLE PROBLEM (MODEL 2)
6		DEFORMED SHAPE
		AT LOAD STEP = 5
		EXAMPLE PROBLEM (MODEL 2)
7		DEFORMED SHAPE
		AT LOAD STEP = 8
		EXAMPLE PROBLEM (MODEL 2)
8		DEFORMED SHAPE
		AT LOAD STEP = 11
		EXAMPLE PROBLEM (MODEL 2)
9		DEFORMED SHAPE
		AT LOAD STEP = 14
		EXAMPLE PROBLEM (MODEL 2)
10		PRINCIPAL STRESS DISTRIBUTION
		AT LOAD STEP = 5
		EXAMPLE PROBLEM (MODEL 2)
11		PRINCIPAL STRESS DISTRIBUTION
		AT LOAD STEP = 8
		EXAMPLE PROBLEM (MODEL 2)

Table 6.12 Listing of text output file PLTXY.LST

PLOT NO	TITLE
1	DISPLACEMENT HISTORY AT LOCATION: 1 AT NODE 609
2	DISPLACEMENT HISTORY AT LOCATION : 2 AT NODE 1
3	DISPLACEMENT HISTORY AT LOCATION : 3 AT NODE 310
4	DISPLACEMENT HISTORY AT LOCATION: 4 AT NODE 19
5	DISPLACEMENT HISTORY AT LOCATION : 5 AT NODE 1255

6-100 Example 2

6.3 Example 3

Example 3 represents two identical tunnels as schematically shown in Figure 6.72.

A typical NATM tunnel shape is chosen here to be analyzed using program TUNA Plus. Geometric parameters related to tunnel shape, rock bolts, shotcrete, and liner are given in Figure 6.1. Geological profile, tunnel depth, and analysis boundaries are specified in Figure 6.72. Material properties of soil/rock layers and supports are summarized in Table 6.2.

As shown in Table 6.13, tunnel construction involves four major excavation stages; upper core excavation in right tunnel, lower core excavation in right tunnel, upper core excavation in left tunnel, and lower core excavation in left tunnel. Each excavation stage is associated with three load steps; 50% stress release, additional 25% stress release where soft shotcrete and rock bolts are installed, and the last 25% stress release where shotcrete is hardened. It should be noted that program TUNA Plus uses first two load steps to generate in situ K_0 stress state.

For lining analysis, reinforced concrete liner is considered with interface joint element between the liner and the surrounding medium. The interface joint properties are set to allow separation when the tensile stress develops in the direction normal to the interface while full slippage is assumed along the interface.

For loads acting on the reinforced concrete liner, following four different load combinations are considered:

- 1. Weight
- 2. Weight + Water Pressure
- 3. Weight + Water Pressure + Loosening Load
- 4. Weight + Water Pressure + Loosening Load + Support Degradation

6-102 Example 3

Ground water pressure is applied to the liner except the invert. As loosening load, a uniform vertical stress as shown in Table 6.13 is applied to the liner in the left tunnel. As support degradation, rock bolts are deactivated.

The input file EX3.DAT is listed in Table 6.14. Text output file STEP.LST in Table 6.15 lists steps where major excavations take place and external lining loads are applied.

Figures 6.73 to 6.87 show PLOT-2D graphical outputs at the completion of excavation and at the last load step for lining. Brief description of these plots are shown in the text output file PLTDS.LST in Table 6.16.

Figures 6.88 and 6.89 show PLOT-XY graphical outputs at tunnel crowns. Brief description of these plots are shown in the text output file PLTXY.LST in Table 6.17.

Step	Construction State	Descriptions
1,2		In Situ K _。 State
3		50% Stress Relief
4		75% Stress Relief Soft Shotcrete Rock Bolt
5		100% Stress Relief Hard Shotcrete Rock Bolt

Table 6.13 Simulation of construction sequence

Table 6.13 Simulation of construction sequence (Continued)

Step	Construction State	Descriptions
6		50% Stress Relief
7		Ger Core Excavation (Right Core Excavation (R
8		100% Stress Relief Hard Shotcrete

Table 6.13	Simulation	of construction	sequence	(Continued)
------------	------------	-----------------	----------	-------------

Step	Construction State	Descriptions
9		50% Stress Relief
10		75% Stress Relief Soft Shotcrete Rock Bolt Soft
11		100% Stress Relief Hard Shotcrete Rock Bolt

Table 6.13 Simulation of construction sequence (Continued)

Step	Construction State	Descriptions
12		50% Stress Relief
13		Core Excavation Core Excavation Core Core Core Core Core Core Core Core
14		100% Stress Relief Hard Shotcrete

Step	Construction State	Descriptions
15		Lining Subjected to: Weight
18	▼ 11.94 m	Lining Subjected to: Weight + Water Pressure
21	↓ ↓	Lining Subjected to: Weight + Water Pressure + Loosening Load
22	↓ ↓	Lining Subjected to: Weight + Water Pressure + Loosening Load + Rock Bolt Deactivation

Table 6.13 Simulation of construction sequence (Continued)

Table 6.14 Listing of input file EX3.DAT

```
* GENERAL INFORMATION
*
* CARD 1.1
* TITLE
 EXAMPLE PROBLEM ( MODEL 3 )
*
* CARD 1.2
* IUNIT
  3
*
* CARD 1.3
* MODEL IGEN IEXMESH ILNCOUPL IEXORDER IRBP
                                               0
  3
            0
                               0
                                                               0
                     0
*
* TUNNEL ANALYSIS BOUNDARY
* CARD 2.1
* HT HL W WP DELTAX DELTAY NDYMAX
21.94 30. 60. 20. 2.0 2.0 40
*
* SOIL / ROCK LAYER INFORMATION
*
* CARD 3.1
* NLAYER
  4
* CARD 3.2

      * LAYERNO
      H
      GAMA
      RKO
      E
      V
      PHI
      C
      T

      1
      4.2
      1.9
      0.5
      2000.
      0.33
      30.
      3.
      20.

      2
      4.3
      1.9
      0.43
      5000.
      0.30
      35.
      30.
      30.

      3
      3.5
      2.4
      0.33
      20000.
      0.25
      40.
      70.
      40.

                39.94 2.55 0.25 200000. 0.20 45. 100. 50.
 4
* ADDITIONAL TOP SOIL / ROCK LAYER
+
* CARD 3.3.1
* NATLAYER
  0
*
* USER SPECIFIED SOIL / ROCK LAYER
* CARD 3.4.1
* NUSLAYER
  0
*
* USER SPECIFIED DISTRIBUTED SURFACE LOAD
*
* CARD 3.5.1
* NUSXPD
  0
```

```
* SHOTCRETE PROPERTIES
* CARD 3.6
* E V PHI C T GAMA
1.5E+06 0.2 30. 500. 100. 2.4
* E
* LINING PROPERTIES
* CARD 3.7
                       C T GAMA ER VR
500. 300. 2.5 2.1E+07 0.2
* E V PHI
2.1E+06 0.2 30.
          V
* E
*
* ROCK BOLT PROPERTIES
* CARD 3.8
                   Е
                         STRSI SIGMAy
* A
          WL
                                                 Ef
0.000491 0.00383 2.1E+07 0.0 2.3E+04 1.0
* INTERFACE PROPERTIES BETWEEN SHOTCRETE AND LINING
* CARD 3.9
* CARD 3.9
* NM E G t
2 200000.2.0 0.001
2
* C
         PHI
0.001 5.0
* E1 E2 E3 E4 S1 S2 S3 S4
-1.0 0.0 1.0E-7 1.0 -200000. 0.0 2.E-02 2.E-02
*
* TUNNEL DIMENSION
*
* CARD 4.0
* ISTYPE GR GA
1 1.0 0.5
*
* CARD 4.1
* R1 A1 R2 A2 R3 A3 R4
 5.24 60. 4.24 30. 9.86 19.781 23.86
* CARD 4.2
* CARD 4.2
* INVSHOT TS INVLN TL DI ASI DO ASO
0 0.15 1 0.3 0.05 0.0022 0.05 0.0022
* CARD 4.3
* NUMRB LRB
11 3.0
               LSPACING TSPACING NSRB
1.35 1.2 2
*
* EXCAVATION STRESS RELEASE AND SHOTCRETE MODULUS CHANGE
* CARD 5.1
* PSR PASR RESH
         25. 0.33
 50.
```

```
*
* EXTERNAL LOADS FOR LINING ANALYSIS
* CARD 6.1
* LDTYPE
1
*
* WATER PRESSURE
*
* CARD 6.2
* LGWINV NWPSTEP DGW GAMAW
0 3 10. 1.0
*
* LOOSENING LOAD
*
* CARD 6.3.1
* LSDADD NLDSTEP HPRES VPRES
1 3 0.0 0.0
*
* ADDITIONAL VERTICAL LOOSENING LOAD FOR RIGHT TUNNEL
* CARD 6.3.2
* DXv1 DXv2 Qv1 Qvo
5.2 5.2 0.0 0.0
                               Qv2
0.0
*
* ADDITIONAL VERTICAL LOOSENING LOAD FOR LEFT TUNNEL
* CARD 6.3.2
* DXv1 DXv2
5.2 5.2
                 Qv1 Qvo Qv2
10. 10. 10.
*
* PRIMARY SUPPORT DEGRADATION
*
* CARD 6.4
* LPSDEG REDH
1 1.0
*
* SUBGRADE REACTION FOR ILNCOUPL = 1
*
* CARD 6.5
* SUBGK
* 1.0E+05
* END OF DATA
```

Table 6.15 Listing of Text output file STEP.LST

STEP NO DESCRIPTIONS 5 Excavation of Upper Right Core in Right Tunnel Excavation of Upper Left Core in Right Tunnel 8 Excavation of Lower Right Core in Right Tunnel Excavation of Lower Left Core in Right Tunnel 11 Excavation of Upper Right Core in Left Tunnel Excavation of Upper Left Core in Left Tunnel 14 Excavation of Lower Right Core in Left Tunnel Excavation of Lower Left Core in Left Tunnel 15 Lining Subjected to: Weight 18 Lining Subjected to: Weight Water Pressure 21 Lining Subjected to: Weight Water Pressure Loosening Load 22 Lining Subjected to: Weight Water Pressure Loosening Load Rock Bolt Deactivation & Shotcrete Degradation

6-112 Example 3

Table 6.16 Partial listing of text output file PLTDS.LST

```
PLOT NO
        TITLE
   1
          FINITE ELEMENT MESH
          EXAMPLE PROBLEM ( MODEL 3 )
   2
         DEFORMED SHAPE
          AT LOAD STEP = 5
          EXAMPLE PROBLEM ( MODEL 3 )
   3
         DEFORMED SHAPE
          AT LOAD STEP = 8
          EXAMPLE PROBLEM ( MODEL 3 )
         DEFORMED SHAPE
   4
          AT LOAD STEP = 11
          EXAMPLE PROBLEM ( MODEL 3 )
   5
         DEFORMED SHAPE
         AT LOAD STEP = 14
          EXAMPLE PROBLEM ( MODEL 3 )
   6
         DEFORMED SHAPE
          AT LOAD STEP = 5
          EXAMPLE PROBLEM ( MODEL 3 )
   7
         DEFORMED SHAPE
          AT LOAD STEP = 8
          EXAMPLE PROBLEM ( MODEL 3 )
         DEFORMED SHAPE
   8
          AT LOAD STEP = 11
          EXAMPLE PROBLEM ( MODEL 3 )
   9
         DEFORMED SHAPE
          AT LOAD STEP = 14
         EXAMPLE PROBLEM ( MODEL 3 )
  10
         PRINCIPAL STRESS DISTRIBUTION
          AT LOAD STEP = 5
          EXAMPLE PROBLEM ( MODEL 3 )
         PRINCIPAL STRESS DISTRIBUTION
  11
          AT LOAD STEP = 8
          EXAMPLE PROBLEM ( MODEL 3 )
```

12	PRINCIPAL STRESS DISTRIBUTION AT LOAD STEP = 11
	EXAMPLE PROBLEM (MODEL 3)
13	PRINCIPAL STRESS DISTRIBUTION AT LOAD STEP = 14
	EXAMPLE PROBLEM (MODEL 3)
14	PRINCIPAL STRESS DISTRIBUTION
	AT LOAD STEP = 5 EXAMPLE PROBLEM (MODEL 3)
15	PRINCIPAL STRESS DISTRIBUTION
	AT LOAD STEP = 8
	EXAMPLE PROBLEM (MODEL 3)
16	PRINCIPAL STRESS DISTRIBUTION
	AT LOAD STEP = 11
	EXAMPLE PROBLEM (MODEL 3)
17	PRINCIPAL STRESS DISTRIBUTION
	AT LOAD STEP = 14
	EXAMPLE PROBLEM (MODEL 3)
18	Contours of Safety Factor
	AT LOAD STEP = 5
	EXAMPLE PROBLEM (MODEL 5)
19	Contours of Safety Factor
	EXAMPLE PROBLEM (MODEL 3)
20	Contours of Safaty Factor
20	AT LOAD STEP = 11
	EXAMPLE PROBLEM (MODEL 3)
21	Contours of Safety Factor
	AT LOAD STEP = 14
	EXAMPLE PROBLEM (MODEL 3)
22	AXIAL STRESS
	EXAMPLE PROBLEM (MODEL 3)
22	
23	AT LOAD STEP = 8
	EXAMPLE PROBLEM (MODEL 3)

48	OUTER EXTREME FIBER STRESS AT LOAD STEP = 21 EXAMPLE PROBLEM (MODEL 3)
49	INNER REINFORCING BAR STRESS AT LOAD STEP = 21 EXAMPLE PROBLEM (MODEL 3)
50	OUTER REINFORCING BAR STRESS AT LOAD STEP = 21 EXAMPLE PROBLEM (MODEL 3)
51	BENDING MOMENT AT LOAD STEP = 22 EXAMPLE PROBLEM (MODEL 3)
52	THRUST AT LOAD STEP = 22 EXAMPLE PROBLEM (MODEL 3)
53	SHEAR AT LOAD STEP = 22 EXAMPLE PROBLEM (MODEL 3)
54	INNER EXTREME FIBER STRESS AT LOAD STEP = 22 EXAMPLE PROBLEM (MODEL 3)
55	OUTER EXTREME FIBER STRESS AT LOAD STEP = 22 EXAMPLE PROBLEM (MODEL 3)
56	INNER REINFORCING BAR STRESS AT LOAD STEP = 22 EXAMPLE PROBLEM (MODEL 3)
57	OUTER REINFORCING BAR STRESS AT LOAD STEP = 22 EXAMPLE PROBLEM (MODEL 3)

Table 6.17 Listing of text output file PLTXY.LST

PLOT NO	TITLE
1	DISPLACEMENT HISTORY AT LOCATION : 1 AT NODE 443
2	DISPLACEMENT HISTORY AT LOCATION : 2 AT NODE 1
3	DISPLACEMENT HISTORY AT LOCATION : 3 AT NODE 233
4	DISPLACEMENT HISTORY AT LOCATION : 4 AT NODE 14
5	DISPLACEMENT HISTORY AT LOCATION : 5 AT NODE 910
6	DISPLACEMENT HISTORY AT LOCATION : 6 AT NODE 1951
7	DISPLACEMENT HISTORY AT LOCATION : 7 AT NODE 1509
8	DISPLACEMENT HISTORY AT LOCATION : 8 AT NODE 1741
9	DISPLACEMENT HISTORY AT LOCATION : 9 AT NODE 2418
10	DISPLACEMENT HISTORY AT LOCATION : 10 AT NODE 1522

6-118 Example 3

6.4 Example 4

Example 4 represents two different tunnels as schematically shown in Figure 6.90.

A typical NATM tunnel shape is chosen here to be analyzed using program TUNA Plus. Geometric parameters related to tunnel shape, rock bolts, shotcrete, and liner are given in Figure 6.1 for the right tunnel and Figure 6.52 for the left tunnel. Geological profile, tunnel depth, and analysis boundaries are specified in Figure 6.90. Material properties of soil/rock layers and supports are summarized in Table 6.2.

As shown in Table 6.18, tunnel construction involves four major excavation stages; upper core excavation in right tunnel, lower core excavation in right tunnel, upper core excavation in left tunnel, and lower core excavation in left tunnel. Each excavation stage is associated with three load steps; 50% stress release, additional 25% stress release where soft shotcrete and rock bolts are installed, and the last 25% stress release where shotcrete is hardened. It should be noted that program TUNA Plus uses first two load steps to generate in situ K_0 stress state.

For lining analysis, reinforced concrete liner is considered with interface joint element between the liner and the surrounding medium. The interface joint properties are set to allow separation when the tensile stress develops in the direction normal to the interface while full slippage is assumed along the interface

For loads acting on the reinforced concrete liner, following four different load combinations are considered:

- 1. Weight
- 2. Weight + Water Pressure
- 3. Weight + Water Pressure + Loosening Load
- 4. Weight + Water Pressure + Loosening Load + Support Degradation

Ground water pressure is applied to the liner except the invert. As loosening load, a uniform vertical stress to the right tunnel liner and a symmetric triangular vertical stress to the left tunnel liner as shown in Table 6.18 are applied. As support degradation, rock bolts are deactivated.

The input file EX4.DAT is listed in Table 6.19. Text output file STEP.LST in Table 6.20 lists steps where major excavations take place and external lining loads are applied.

Figures 6.91 to 6.105 show PLOT-2D graphical outputs at the completion of excavation and at the last load step for lining. Brief description of these plots are shown in the text output file PLTDS.LST in Table 6.21.

Figures 6.106 and 6.107 show PLOT-XY graphical outputs at tunnel crowns. Brief description of these plots are shown in the text output file PLTXY.LST in Table 6.22.

Step	Construction State	Descriptions	
1,2		In Situ K _。 State	
3		50% Stress Relief	ght Tunnel)
4		75% Stress Relief Soft Shotcrete Rock Bolt	Core Excavation (Ri
5		100% Stress Relief Hard Shotcrete Rock Bolt	Upper

Table 6.18 Simulation of construction sequence

Step	Construction State	Descriptions
6		50% Stress Relief
7		75% Stress Relief Soft Shotcrete
8		100% Stress Relief Hard Shotcrete

 Table 6.18
 Simulation of construction sequence (Continued)

Table 6.18	Simulation	of	construction	sequence	(Continued)	
------------	------------	----	--------------	----------	-------------	--

Step	Construction State	Descriptions
9		50% Stress Relief
10		75% Stress Relief Soft Shotcrete Rock Bolt Junio Soft Shotcrete Rock Bolt Junio Soft Shotcrete Rock Bolt Junio Soft Shotcrete Soft Shotcrete Soft Shotcrete
11		100% Stress Relief Hard Shotcrete Rock Bolt

Table 6.18	Simulation	of	construction	sequence	(Continued)	1
------------	------------	----	--------------	----------	-------------	---

Step	Construction State	Descriptions	
12		50% Stress Relief	unnel)
13		75% Stress Relief Soft Shotcrete Rock Bolt	r Core Excavation (Left Ti
14		100% Stress Relief Hard Shotcrete Rock Bolt	Lowe

Step	Construction State	Descriptions	
15		Lining Subjected to: Weight	
18	↓ 11.94 m	Lining Subjected to: Weight + Water Pressure	
21	20 t/m² 10 t/m² 11.94 m	Lining Subjected to: Weight + Water Pressure + Loosening Load	
22	20 t/m ² 10 t/m ² 11.94 m	Lining Subjected to: Weight + Water Pressure + Loosening Load + Rock Bolt Deactivation	

Table 6.18 Simulation of construction sequence (Continued)

Table 6.19 Listing of input file EX4.DAT

```
*
* GENERAL INFORMATION
*
* CARD 1.1
* TITLE
EXAMPLE PROBLEM ( MODEL 4 )
*
* CARD 1.2
* IUNIT
 3
*
* CARD 1.3
* MODEL IGEN IEXMESH ILNCOUPL IEXORDER IRBP
 4 0 0 0 1
                                                0
*
* CARD 1.4
* IEZ1 IEZ2 IEZ3 IEZ4 IEZ5 IEZ6 IEZ7 IEZ8
1 2 1 2 3 4 3 4
                                        3
*
* TUNNEL ANALYSIS BOUNDARY
* CARD 2.1
* HT HL W WP HP DELTAX DELTAY NDYMAX
21.94 30. 80. 25. 2.0 2.0 2.0 40
* SOIL / ROCK LAYER INFORMATION
*
* CARD 3.1
* NLAYER
 4
* CARD 3.2
           HGAMARKOEVPHICT4.21.90.52000.0.3330.3.20.4.31.90.435000.0.3035.30.30.3.52.40.3320000.0.2540.70.40.39.942.550.25200000.0.2045.100.50.
* LAYERNO H
 1
 2
 3
 4
* ADDITIONAL TOP SOIL / ROCK LAYER
*
* CARD 3.3.1
* NATLAYER
 0
*
* USER SPECIFIED SOIL / ROCK LAYER
* CARD 3.4.1
* NUSLAYER
 0
```

```
* USER SPECIFIED DISTRIBUTED SURFACE LOAD
* CARD 3.5.1
* NUSXPD
0
* SHOTCRETE PROPERTIES
* CARD 3.6
* CARD 3.6
* E V PHI C T GAMA
1.5E+06 0.2 30. 500. 100. 2.4
* Е
* LINING PROPERTIES
*
* CARD 3.7
V
* E V PHI C T GAMA ER VR
2.1E+06 0.2 30. 500. 300. 2.5 2.1E+07 0.2
*
* ROCK BOLT PROPERTIES
* CARD 3.8
* A WL E STRSI SIGMAY Ef
0.000491 0.00383 2.1E+07 0.0 2.3E+04 1.0
                                                 1.0
* INTERFACE PROPERTIES BETWEEN SHOTCRETE AND LINING
*
* CARD 3.9
* NM E G t
3 200000.2.0 0.001
* C
        PHI
0.001 5.0
* E1 E2 E3 E4 S1 S2 S3 S4
-1.0 0.0 1.0E-7 1.0 -200000. 0.0 2.E-02 2.E-02
*
* TUNNEL DIMENSION (FOR RIGHT TUNNEL)
* CARD 4.0
* ISTYPE GR GA
1 1.0 0.5
* CARD 4.1
* R1 A1 R2 A2 R3 A3 R4
5.24 60. 4.24 30. 9.86 19.781 23.86
* CARD 4.2
* INVSHOT TS
                INVLN TL
                                 DI ASI DO
                                                   ASO
0 0.15 1 0.3 0.05 0.0022 0.05 0.0022
* CARD 4.3
* NUMRB LRB LSPACING TSPACING NSRB
         3.0
11
                 1.35
                       1.2
                                     2
*
```

```
Example 4 6-143
```

```
* TUNNEL DIMENSION (FOR LEFT TUNNEL)
* CARD 4.0
* ISTYPE GR GA
1 1.0 0.5
-1-
* CARD 4.1
* R1 A1 R2 A2 R3 A3 R4
 7.24 60. 6.24 30. 11.86 21.781 25.86
* CARD 4.2

        TS
        INVLN
        TL
        DI
        ASI
        DO
        ASO

        0.20
        1
        0.4
        0.05
        0.0033
        0.05
        0.0033

* INVSHOT TS
 0
* CARD 4.3
* NUMRB LRB LSPACING TSPACING NSRB
21 3.0 1.35 1.2
                                     2
* EXCAVATION STRESS RELEASE AND SHOTCRETE MODULUS CHANGE
*
* CARD 5.1
* PSR PASR RESH
50. 25. 0.33
*
* EXTERNAL LOADS FOR LINING ANALYSIS
* CARD 6.1
* LDTYPE
1
*
* WATER PRESSURE
*
* CARD 6.2
                         GAMAW
1.0
* LGWINV NWPSTEP DGW
0 3 10.
*
* LOOSENING LOAD
* CARD 6.3.1
* LSDADD NLDSTEP HPRES VPRES
1 3 0.0 0.0
* ADDITIONAL VERTICAL LOOSENING LOAD FOR RIGHT TUNNEL
* CARD 6.3.2
* DXv1 DXv2
5.09 5.09
                  Qv1
10.
                            Qvo
                                    Qv2
                          10.
                                   10.
* ADDITIONAL VERTICAL LOOSENING LOAD FOR LEFT TUNNEL
* CARD 6.3.2
* DXv1 DXv2
7.24 7.24
                          Qvo
20.
                    Qv1
                                      0v2
                  0.0
                                      0.0
```

```
*
* PRIMARY SUPPORT DEGRADATION
*
* CARD 6.4
* LPSDEG REDH
1 1.0
* SUBGRADE REACTION FOR ILNCOUPL = 1
*
* CARD 6.4
* SUBGK
* 1.0E+05
*
* END OF DATA
```

STEP NO	DESCRIPTIONS
5	
	Excavation of Upper Right Core in Right Tunnel
	Excavation of Upper Left Core in Right Tunnel
8	
	Excavation of Lower Right Core in Right Tunnel
	Excavation of Lower Left Core in Right Tunnel
11	
	Excavation of Upper Right Core in Left Tunnel
	Excavation of Upper Left Core in Left Tunnel
14	
	Excavation of Lower Light Core in Left Tunnel
15	
15	Lining Subjected to:
	Weight
18	weight
10	Lining Subjected to:
	Weight
	Water Pressure
21	
	Lining Subjected to:
	Weight
	Water Pressure
	Loosening Load
22	
	Lining Subjected to:
	Weight
	Water Pressure
	Loosening Load
	Rock Boll Deactivation &

Table 6.20 Listing of text output file STEP.LST

Table 6.21 Partial listing of text output file PLTDS.LST

```
PLOT NO TITLE
  1
        FINITE ELEMENT MESH
         EXAMPLE PROBLEM ( MODEL 4 )
        DEFORMED SHAPE
   2
         AT LOAD STEP = 5
        EXAMPLE PROBLEM ( MODEL 4 )
   3
        DEFORMED SHAPE
         AT LOAD STEP = 8
        EXAMPLE PROBLEM ( MODEL 4 )
        DEFORMED SHAPE
   4
        AT LOAD STEP = 11
        EXAMPLE PROBLEM ( MODEL 4 )
   5
        DEFORMED SHAPE
         AT LOAD STEP = 14
        EXAMPLE PROBLEM ( MODEL 4 )
   6
        DEFORMED SHAPE
         AT LOAD STEP =
                          5
         EXAMPLE PROBLEM ( MODEL 4 )
   7
        DEFORMED SHAPE
         AT LOAD STEP =
                          8
         EXAMPLE PROBLEM ( MODEL 4 )
   8
        DEFORMED SHAPE
         AT LOAD STEP = 11
        EXAMPLE PROBLEM ( MODEL 4 )
   9
        DEFORMED SHAPE
         AT LOAD STEP = 14
         EXAMPLE PROBLEM ( MODEL 4 )
 10
       PRINCIPAL STRESS DISTRIBUTION
         AT LOAD STEP = 5
         EXAMPLE PROBLEM ( MODEL 4 )
```

48	OUTER EXTREME FIBER STRESS AT LOAD STEP = 21 EXAMPLE PROBLEM (MODEL 4)
49	INNER REINFORCING BAR STRESS AT LOAD STEP = 21 EXAMPLE PROBLEM (MODEL 4)
50	OUTER REINFORCING BAR STRESS AT LOAD STEP = 21 EXAMPLE PROBLEM (MODEL 4)
51	BENDING MOMENT AT LOAD STEP = 22 EXAMPLE PROBLEM (MODEL 4)
52	THRUST AT LOAD STEP = 22 EXAMPLE PROBLEM (MODEL 4)
53	SHEAR AT LOAD STEP = 22 EXAMPLE PROBLEM (MODEL 4)
54	INNER EXTREME FIBER STRESS AT LOAD STEP = 22
55	EXAMPLE PROBLEM (MODEL 4) OUTER EXTREME FIBER STRESS AT LOAD STEP = 22
56	EXAMPLE PROBLEM (MODEL 4) INNER REINFORCING BAR STRESS
	EXAMPLE PROBLEM (MODEL 4)
57	OUTER REINFORCING BAR STRESS AT LOAD STEP = 22 EXAMPLE PROBLEM (MODEL 4)

Table 6.22 Listing of text output file PLTXY.LST

```
PLOT NO TITLE
  1
      DISPLACEMENT HISTORY AT LOCATION : 1
        AT NODE 443
       DISPLACEMENT HISTORY AT LOCATION : 2
   2
        AT NODE 1
        DISPLACEMENT HISTORY AT LOCATION : 3
   3
        AT NODE 233
   4
        DISPLACEMENT HISTORY AT LOCATION : 4
        AT NODE 14
   5
        DISPLACEMENT HISTORY AT LOCATION : 5
        AT NODE 1107
   6
        DISPLACEMENT HISTORY AT LOCATION : 6
        AT NODE 2354
   7
        DISPLACEMENT HISTORY AT LOCATION : 7
        AT NODE 1746
        DISPLACEMENT HISTORY AT LOCATION : 8
   8
        AT NODE 2055
   9
       DISPLACEMENT HISTORY AT LOCATION : 9
        AT NODE 2962
 10
        DISPLACEMENT HISTORY AT LOCATION : 10
        AT NODE 1764
```


6-152 Example 4

6-156 Example 4

6-160 Example 4

6.5 Example 5

Example 5 is the same as Example 2 in Section 6.2 except that the top soil layer is replaced by the inclined soil layer as schematically shown in Figure 6.108. The inclined top soil layer is modeled using NATLAYER=2 in Card Group 3.3. Lining analysis is not performed.

Table 6.23 lists the input data for Example 5.

Finite element mesh generated by TUNA Plus is shown in Figure 6.109. Summarized in the following are the results at the completion of tunnel excavation.

- Figure 6.110 Ground surface settlement
- Figure 6.111 Tunnel deformed shape
- Figure 6.112 Principal stresses around tunnel
- Figure 6.113 Shotcrete stresses
- Figure 6.114 Contour of safety factor
- Figure 6.115 Rock bolt axial stresses

Table 6.23 Listing of input file EX5.DAT

```
*
* GENERAL INFORMATION
*
* CARD 1.1
* TITLE
  EXAMPLE PROBLEM 5 ( MODEL 2 )
*
* CARD 1.2
* IUNIT
   3
*
* CARD 1.3
* MODEL IGEN IEXMESH ILNCOUPL IEXORDER IRBP
2 0 0 0 1 0
*
* CARD 1.4
* IEZ1 IEZ2 IEZ3 IEZ4
1 2 1 2
*
* TUNNEL ANALYSIS BOUNDARY
*
* CARD 2.1
* HT HL W
15.74 30. 60.
                              DELTAX DELTAY NDYMAX
                            2.0
                                            2.0
                                                         40
*
* SOIL / ROCK LAYER INFORMATION
*
* CARD 3.1
* NLAYER
   3
* CARD 3.2

        H
        GAMA
        RKO
        E
        V
        PHI

        4.3
        1.9
        0.43
        5000.
        0.30
        35.

        3.5
        2.4
        0.33
        20000.
        0.25
        40.

        37.94
        2.55
        0.25
        200000.
        0.20
        45.

                                                                             C T
30. 30.
70. 40.
* LAYERNO
   1
   2
                                                                              100. 50.
   3
*
* ADDITIONAL TOP SOIL / ROCK LAYER
* CARD 3.3.1
* NATLAYER
 2
*
* CARD 3.3.2
*
* FIRST LAYER
* CARD 3.3.2.1
* GAMA RKO E V PHI C
1.9 0.5 2000.0 0.33 30. 3.
                                                              Т
                                                              20.
*
```

Example 5 6-169

```
* CARD 3.3.2
* SECOND LAYER
*
* CARD 3.3.2.1
* GAMA RKO E V PHI C T
1.9 0.5 2000.0 0.33 30. 3. 20.
* CARD 3.3.3
* NUMSXP
  3
* CARD 3.3.4.1
* Xi H1j H2j
0.0 2.0 14.2
30. 2.0 4.2
60. 2.0 4.2
*
*
* USER SPECIFIED SOIL / ROCK LAYER
*
* CARD 3.4.1
* NUSLAYER
0
*
* USER SPECIFIED DISTRIBUTED SURFACE LOAD
* CARD 3.5.1
* NUSXPD
  0
*
* SHOTCRETE PROPERTIES
*
* CARD 3.6
* E V PHI
1.5E+06 0.2 30.
                            C T GAMA
500. 100. 2.4
*
* LINING PROPERTIES
*
* CARD 3.7
* E V PHI C T
2.1E+06 0.2 30. 500. 300.
                                             GAMA ER VR
0.0 2.1E+07 0.2
*
* ROCK BOLT PROPERTIES
* CARD 3.8
 CARD 3.8
A WL E STRSI SIGMAy Ef
0.000491 0.00383 2.1E+07 0.0 2.3E+04 1.0
* A
```

```
* INTERFACE PROPERTIES BETWEEN SHOTCRETE AND LINING
*
* CARD 3.9
* NM E G t
2 200000. 2.0 0.001
2
* C

        Z
        Z000

        C
        PHI

        0.001
        5.0

        E1
        E2

        -1.0
        0.0

* E1
                          E3 E4 S1 S2
1.0E-7 1.0 -200000.0.0
                                                                                  S3 S4
2.E-02 2.E-02
-1.0
*
* TUNNEL DIMENSION
*
* CARD 4.0
* ISTYPE GR GA
1 1.0 0.5
*
* CARD 4.1
* R1 A1 R2 A2 R3 A3 R4
7.24 60. 6.24 30. 11.86 21.781 25.86

      7.24
      60.
      6.24
      30.
      11.00
      21.761
      25.00

      * CARD 4.2
      *
      INVSHOT TS
      INVLN
      TL
      DI
      ASI
      DO
      ASO

      0
      0.20
      1
      0.4
      0.05
      0.0033
      0.0033

* CARD 4.3
* NUMRB LRB LSPACING TSPACING NSRB
21 3.0 1.35 1.2 2
*
* EXCAVATION STRESS RELEASE AND SHOTCRETE MODULUS CHANGE
* CARD 5.1
* PSR PASR 50. 25.
                               RESH
                              0.33
*
* EXTERNAL LOADS FOR LINING ANALYSIS
*
* CARD 6.1
* LDTYPE
 0
* END OF DATA
```

Example 5 6-171

6.6 Example 6

Example 6 is the same as Example 2 in Section 6.2 except that there is an additional inclined rock layer ($E=100,000 \text{ t/m}^2$) between soft and hard rocks as schematically shown in Figure 6.116. The inclined additional rock layer is modeled using NUSLAYER=1 in Card Group 3.4. Lining analysis is not performed.

Table 6.24 lists the input data for Example 6.

Finite element mesh generated by **TUNA Plus** is shown in Figure 6.117. Summarized in the following are the results at the completion of tunnel excavation.

- Figure 6.118 Ground surface settlement
- Figure 6.119 Tunnel deformed shape
- Figure 6.120 Principal stresses around tunnel
- Figure 6.121 Shotcrete stresses
- Figure 6.122 Contour of safety factor
- Figure 6.123 Rock bolt axial stresses

Table 6.24 Listing of input file EX6.DAT

```
*
* GENERAL INFORMATION
* CARD 1.1
* TITLE
EXAMPLE PROBLEM 6 ( MODEL 2 )
+
* CARD 1.2
* IUNIT
3
*
* CARD 1.3
* MODEL IGEN IEXMESH ILNCOUPL IEXORDER IRBP
2 0 0 0 1 0
  2
*
* CARD 1.4
* IEZ1 IEZ2 IEZ3 IEZ4
  1
           2
                     1
                               2
*
* TUNNEL ANALYSIS BOUNDARY
*
* CARD 2.1
* HT HL W DELT.
19.94 30. 60. 2.0
                             DELTAX DELTAY NDYMAX
                                       2.0
                                                        40
* SOIL / ROCK LAYER INFORMATION
*
* CARD 3.1
* NLAYER
  4
* CARD 3.2
* LAYERNO
                            GAMA RKO E
                                                          V
                                                                 PHI
                  Н
                                                                            С
                                                                                     Т

        H
        GAMA
        RKO
        E
        V
        PHI

        4.2
        1.9
        0.5
        2000.
        0.33
        30.

        4.3
        1.9
        0.43
        5000.
        0.30
        35.

        3.5
        2.4
        0.33
        20000.
        0.25
        40.

        37.94
        2.55
        0.25
        200000.
        0.20
        45.

                                                                            3. 20.
30. 30.
70. 40.
100. 50.
  1
  2
   3
  4
*
* ADDITIONAL TOP SOIL / ROCK LAYER
* CARD 3.3.1
* NATLAYER
0
*
* USER SPECIFIED SOIL / ROCK LAYER
*
* CARD 3.4.1
* NUSLAYER
   1
*
* CARD 3.4.2
* LAYERNO
   1
* CARD 3.4.3
* X1 Y1 X2 Y2 X3 Y3 X4 Y4
60. 37.94 0.0 37.94 0.0 10.00 30. 23.94
```

Example 6 6-181

```
* CARD 3.4.4
* GAMA RKO E V PHI C T
2.55 0.25 100000. 0.20 45. 100. 50.
*
* USER SPECIFIED DISTRIBUTED SURFACE LOAD
*
* CARD 3.5.1
* NUSXPD
 0
*
* SHOTCRETE PROPERTIES
* CARD 3.6 V
                        C T GAMA
500. 100. 2.4
                  PHI
1.5E+06 0.2 30.
+
* LINING PROPERTIES
4
* CARD 3.7
 E V
2.1E+06 0.2
                 PHI
30.
                        C T GAMA ER VR
500. 300. 0.0 2.1E+07 0.2
* E
*
* ROCK BOLT PROPERTIES
+
* CARD 3.8
 A WL E
0.000491 0.00383 2.1E+07
* A
                                 STRSI SIGMAy
                                                     Εf
                                           2.3E+04
                                0.0
                                                     1.0
* INTERFACE PROPERTIES BETWEEN SHOTCRETE AND LINING
* CARD 3.9
* NM E
                  G
           200000. 2.0 0.001
2
* C
           PHI
 0.001
           5.0
                E3 E4 S1 S2 S3 S4
1.0E-7 1.0 -200000.0.0 2.E-02 2.E-02
* E1
         上之
0.0
-1.0
*
* TUNNEL DIMENSION
*
* CARD 4.0
* ISTYPE GR GA
1 1.0 0.5
* CARD 4.1
* R1 A1 R2 A2 R3 A3 R4
7.24 60. 6.24 30. 11.86 21.781 25.86
                            TL
0.4
                                  DI ASI DO ASO
0.05 0.0033 0.05 0.0033
* INVSHOT TS
                  INVLN
 0
          0.20
                  1
* CARD 4.3
* NUMRB LRB LSPACING TSPACING NSRB
21 3.0 1.35 1.2 2
*
* EXCAVATION STRESS RELEASE AND SHOTCRETE MODULUS CHANGE
*
* CARD 5.1
* PSR PASR
                 RESH
  50.
           25.
                   0.33
```


6-184 Example 6

6.7 Example 7

Example 7 is the same as Example 5 in Section 6.5 except that the inclined top soil layer is replaced by the equivalent distributed surface load as schematically shown in Figure 6.124. The inclined distributed load is modeled using NUSXPD=3 in Card Group 3.5. Lining analysis is not performed.

Table 6.25 lists the input data for Example 7.

Finite element mesh generated by **TUNA Plus** is shown in Figure 6.125. Summarized in the following are the results at the completion of tunnel excavation.

- Figure 6.126 Ground surface settlement
- Figure 6.127 Tunnel deformed shape
- Figure 6.128 Principal stresses around tunnel
- Figure 6.129 Shotcrete stresses
- Figure 6.130 Contour of safety factor
- Figure 6.131 Rock bolt axial stresses

Table 6.25 Listing of input file EX7.DAT

```
*
* GENERAL INFORMATION
* CARD 1.1
* TITLE
  EXAMPLE PROBLEM 7 ( MODEL 2 )
*
* CARD 1.2
* IUNIT
  3
*
* CARD 1.3
* MODEL IGEN IEXMESH ILNCOUPL IEXORDER IRBP
  2
            0
                     0
                           0
                                                                  0
                                           1
*
* CARD 1.4
* IEZ1 IEZ2 IEZ3 IEZ4
1 2 1 2
*
* TUNNEL ANALYSIS BOUNDARY
*
* CARD 2.1
* HT HL W DELTAX DELTAY NDYMAX
15.74 30. 60. 2.0 2.0 40
*
* SOIL / ROCK LAYER INFORMATION
*
* CARD 3.1
* NLAYER
  3
* CARD 3.2

        H
        GAMA
        RKO
        E
        V
        PHI

        4.3
        1.9
        0.43
        5000.
        0.30
        35.

        3.5
        2.4
        0.33
        20000.
        0.25
        40.

        37.94
        2.55
        0.25
        200000.
        0.20
        45.

* LAYERNO
                Н
                                                                        С
                                                                                Т
                                                                        30. 30.
70. 40.
100. 50.
  1
   2
  3
*
* ADDITIONAL TOP SOIL / ROCK LAYER
*
* CARD 3.3.1
* NATLAYER
  0
*
* USER SPECIFIED SOIL / ROCK LAYER
* CARD 3.4.1
* NUSLAYER
  0
*
* USER SPECIFIED DISTRIBUTED SURFACE LOAD
* CARD 3.5.1
* NUSXPD
   3
* CARD 3.5.2.1
* X Q
0.0 26.98
30. 7.98
```

Example 7 6-193

```
60. 7.98
* SHOTCRETE PROPERTIES
*
* CARD 3.6
  E V PHI
1.5E+06 0.2 30.
                              C T GAMA
500. 100. 2.4
* E
*
* LINING PROPERTIES
* CARD 3.7
  E V PHI
2.1E+06 0.2 30.
              V
                              C T GAMA ER VR
500. 300. 0.0 2.1E+07 0.2
* E
*
* ROCK BOLT PROPERTIES
* CARD 3.8
  A WL E
0.000491 0.00383 2.1E+07
* A
                                         STRSI SIGMAy
                                                                 Εf
                                       0.0
                                                   2.3E+04
                                                                 1.0
* INTERFACE PROPERTIES BETWEEN SHOTCRETE AND LINING
*
* CARD 3.9
             E G t
200000.2.0 0.001
* NM E
2
* C

        Z
        Z0000

        C
        PHI

        0.001
        5.0

        E1
        E2

        -1.0
        0.0

                    E3 E4 S1 S2
1.0E-7 1.0 -200000. 0.0
* El
                                                             S3 S4
2.E-02 2.E-02
-1.0
* TUNNEL DIMENSION
+
* CARD 4.0
* ISTYPE GR GA
1 1.0 0.5
*
* CARD 4.1
* R1 A1 R2 A2 R3 A3 R4
7.24 60. 6.24 30. 11.86 21.781 25.86
7.24 00.
* CARD 4.2
* INVSHOT TS INVLN
0 0.20 1
                                'nь
0.4
                                          DI ASI DO ASO
0.05 0.0033 0.05 0.0033
                       INVLN
* NUMRB LRB
21 3.0
                     LSPACING TSPACING NSRB
1.35 1.2 2
                                                2
*
* EXCAVATION STRESS RELEASE AND SHOTCRETE MODULUS CHANGE
* CARD 5.1
* PSR PASR 50. 25.
                      RESH
0.33
*
* EXTERNAL LOADS FOR LINING ANALYSIS
*
* CARD 6.1
* LDTYPE
 0
* END OF DATA
```


6-196 Example 7

6.8 Example 8

Example 8 represents two different tunnels as schematically shown in Figure 6.134.

Shapes of both tunnels are specified using the user defined tunnel section (ISTYPE=3). Geometric parameters related to tunnel shapes are given in Figure 6.132 for the right tunnel and Figure 6.133 for the left tunnel. Geological profile, tunnel depth, and analysis boundaries are specified in Figure 6.134. Material properties of soil/rock layers and supports are summarized in Table 6.2.

As shown in Table 6.26, tunnel construction involves four major excavation stages; upper core excavation in right tunnel, lower core excavation in right tunnel, right core excavation in left tunnel, and left core excavation in left tunnel. Each excavation stage is associated with three load steps; 50% stress release, additional 25% stress release where soft shotcrete and rock bolts are installed, and the last 25% stress release where shotcrete is hardened. It should be noted that program TUNA Plus uses first two load steps to generate in situ K_o stress state.

For lining analysis, reinforced concrete liner is considered with interface joint element between the liner and the surrounding medium. The interface joint properties are set to allow separation when the tensile stress develops in the direction normal to the interface while full slippage is assumed along the interface.

For loads acting on the reinforced concrete liner, only ground water pressure is considered.

The input file EX8.DAT is listed in Table 6.27. Text output file STEP.LST in Table 6.28 lists steps where major excavations take place and external lining loads are applied.

Selected graphical outputs from PLOT-2D are shown in Figures 6.135 to 6.140. Brief description of PLOT-2D plots is given in the text output file PLTDS.LST in Table 6.29.

Selected displacement history graphical outputs from PLOT-XY are shown in Figures 6.141 to 6.144. Brief description of PLOT-XY plots is given in the text output file PLTXT.LST in Table 6.30.

Step	Construction State	Descriptions
1,2		In Situ K。State
3		50 % Stress Relief
4		75 % Stress Relief Soft Shotcrete Rock Bolt 2000 2000 2000 2000 2000 2000 2000 20
5		100% Stress Relief Hard Shotcrete Rock Bolt

Table 6.26 Simulation of construction sequence

Step	Construction State	Descriptions
6		50% Stress Relief
7		75% Stress Relief Soft Shotcrete Rock Bolt Core
8		100% Stress Relief Hard Shotcrete Rock Bolt

Step	Construction State	Descriptions
9		50% Stress Relief
10		75% Stress Relief Soft Shotcrete Rock Bolt Tetto Rock Bolt Rock Bolt
11		☆ 100% Stress Relief Hard Shotcrete Rock Bolt

Step	Construction State	Descriptions
12		50 % Stress Relief
13		75 % Stress Relief Soft Shotcrete Rock Bolt 20 20 20 21 21 21 21 21 21 21 21 21 21 21 21 21
14		의 100 % Stress Relief Hard Shotcrete Rock Bolt

Step	Construction State	Descriptions
18	∑ Sm 15m ↓ ↓	Lining Subjected to: Water Pressure Guiun

Table 6.27 Listing of input file EX8.DAT

```
*
* GENERAL INFORMATION
*
* CARD 1.1
* TITLE
  EXAMPLE PROBLEM 8 (USER DEFINED TUNNEL SECTION)
+
* CARD 1.2
* IUNIT
  3
*
* CARD 1.3
* MODEL IGEN IEXMESH ILNCOUPL IEXORDER IRBP
4 0 0 0 1 0
  4
*
* CARD 1.4
* IEZ1 IEZ2 IEZ3 IEZ4 IEZ5 IEZ6 IEZ7 IEZ8
1 2 1 2 3 3 4 4
*
* TUNNEL ANALYSIS BOUNDARY
*
* CARD 2.1
* HT HL W WP HP DELTAX DELTAY NDYMAX
25.0 30. 70. 25. 10. 2.0 3.0 40
*
* SOIL / ROCK LAYER INFORMATION
* CARD 3.1
* NLAYER
  3
* CARD 3.2

        H
        GAMA
        RKO
        E
        V
        PHI

        5.0
        1.9
        0.43
        5000.
        0.30
        35.

        5.0
        2.4
        0.33
        20000.
        0.25
        40.

        45.0
        2.55
        0.25
        200000.
        0.20
        45.

                                                                           C T
30. 30.
70. 40.
100. 50.
* LAYERNO
  1
  2
  3
*
* ADDITIONAL TOP SOIL / ROCK LAYER
* CARD 3.3.1
* NATLAYER
  0
*
* USER SPECIFIED SOIL / ROCK LAYER
*
* CARD 3.4.1
* NUSLAYER
  0
*
* USER SPECIFIED DISTRIBUTED SURFACE LOAD
+
```

```
* CARD 3.5.1
* NUSXPD
  0
*
* SHOTCRETE PROPERTIES
* CARD 3.6
* E V PHI C T GAMA
1.5E+06 0.2 30. 500. 100. 2.4
* LINING PROPERTIES
*
* CARD 3.7
V
  E V PHI
2.1E+06 0.2 30.
                               C T GAMA ER VR
500. 300. 0.0 2.1E+07 0.2
*
* ROCK BOLT PROPERTIES
*
* CARD 3.8

        A
        WL
        E
        STRSI
        SIGMAy
        Ef

        0.000491
        0.00383
        2.1E+07
        0.0
        2.3E+04
        1.0

* A
*
* INTERFACE PROPERTIES BETWEEN SHOTCRETE AND LINING
* CARD 3.9
* CARD 3.9

* NM E G t

2 200000.2.0 0.001

* C PHI

0.001 5.0

* E1 E2 E3 E4 S1 S2 S3 S4

-1.0 0.0 1.0E-7 1.0 -200000. 0.0 2.E-02 2.E-02
+
* ____
        * TUNNEL DIMENSION
*
* CARD 4.0
* ISTYPE GR GA
3 1.0 0.5
*
* CARD 4.1-1
* NSEG SHOR STR SBR
4 8.0 6.0 0.0
* SEGMENT 1 (CIRCULAR ARS)
                                  TE TL ASI ASO
30. 0.30 0.0020 0.0020
* R XO YO TB
6.1683 0.0 1.85 90.
* SEGMENT 2 (CIRCULAR ARS)
                                   ΤE
 * R XO YO TB
4.9413 1.062 2.463 30.
* R
                                            TL
                                                     ASI ASO
                                   -26.0 0.32
                                                    0.0022 0.0022
* SEGMENT 3 (CIRCULAR ARS)
* R XO YO TB TE TL
0.51 5.045 0.521 -26.0 -90. 0.34
                                                     ASI ASO
                                                     0.0024 0.0024
```

* SEGMENT 4 (STRAIGHT LINE) * 0 XB YB XE YE TL ASI ASO 0 5.045 0.0 0.0 0.0 0.40 0.0030 0.0030 * CARD 4.2 * INVSHOT TS INVLN 1 0.20 1 * CARD 4.2 TL DI ASI DO ASO 0.4 0.05 0.0030 0.05 0.0030 * CARD 4.3 * NUMRB LRB LSPACING TSPACING NSRB 11 3.0 1.35 1.2 2 * _____ * TUNNEL DIMENSION * CARD 4.0 * ISTYPE GR GA 3 1.0 0.5 * CARD 4.1-1 * NSEG SHOR STR SBR 0.0 5 0.0 0.0 * SEGMENT 1 (STRAIGHT LINE) * 0 XB YB XE 0 0.0 6.0 5.5 YE TL ASI ASO 6.0 0.40 0.0066 0.0044 SEGMENT 2 (CIRCULAR ARC) * R XO YO TB 0.5 5.5 5.5 90. * SEGMENT 3 (STRAIGHT LINE) TL ASI ASO ΤE 0.0 0.40 0.0066 0.0066 * 0 XB YB XE 0 6.0 5.5 6.0 ASI ASO 0.0024 0.0024 YE TT. 0.32 0.5 * SEGMENT 4 (CIRCULAR ARS) TL ASI ASO * R XO YO TB 0.5 5.5 0.5 0.0 ΤE 0.0026 0.0026 -90. 0.36 * SEGMENT 5 (STRAIGHT LINE) * 0 XB YB XE 0 5.5 0.0 0.0 ΥE TL ASO AST 0.0 0.38 0.0028 0.0028 * CARD 4.2 * INVSHOT TS INVLN 1 0.20 1 * CARD 4.2 TL DI ASI DO ASO 0.48 0.05 0.0028 0.05 0.0028 * CARD 4.3 * CARD 4.3 * NUMRB LRB LSPACING TSPACING NSRB 7 3.0 1.35 1.6 2 * _____ * EXCAVATION STRESS RELEASE AND SHOTCRETE MODULUS CHANGE * CARD 5.1 * PSR PASR RESH 25. 0.33 50. * + * EXTERNAL LOADS FOR LINING ANALYSIS

```
*
* CARD 6.1
* LDTYPE
1
*
* WATER PRESSURE
*
* CARD 6.2
* LGWINV NWPSTEP DGW GAMAW
0 3 10. 1.0
*
* LOOSENING LOAD
*
* CARD 6.3.1
* LSDADD NLDSTEP HPRES VPRES
0 0 0.00 0.0
*
* PRIMARY SUPPORT DEGRADATION
*
* CARD 6.4
* LPSDEG REDH
0 1.0
* END OF DATA
```

Table 6.28 Listing of text output file STEP.LST

STEP NO DESCRIPTIONS 5 Excavation of Upper Right Core in Right Tunnel Excavation of Upper Left Core in Right Tunnel 8 Excavation of Lower Right Core in Right Tunnel Excavation of Lower Left Core in Right Tunnel 11 Excavation of Upper Right Core in Left Tunnel Excavation of Lower Right Core in Left Tunnel 14 Excavation of Upper Left Core in Left Tunnel Excavation of Lower Left Core in Left Tunnel 18 Lining Subjected to: Water Pressure

Table 6.29 Partial listing of text output file PLTDS.LST

```
PLOT NO TITLE
   1
         FINITE ELEMENT MESH
        EXAMPLE PROBLEM 8 (USER DEFINED TUNNEL SECTION)
        DEFORMED SHAPE
   2
        AT LOAD STEP = 5
        EXAMPLE PROBLEM 8 (USER DEFINED TUNNEL SECTION)
        DEFORMED SHAPE
   3
        AT LOAD STEP = 8
         EXAMPLE PROBLEM 8 (USER DEFINED TUNNEL SECTION)
         _
  30
        INNER EXTREME FIBER STRESS
        AT LOAD STEP = 18
        EXAMPLE PROBLEM 8 (USER DEFINED TUNNEL SECTION)
        OUTER EXTREME FIBER STRESS
  31
        AT LOAD STEP = 18
        EXAMPLE PROBLEM 8 (USER DEFINED TUNNEL SECTION)
  32
        INNER REINFORCING BAR STRESS
        AT LOAD STEP = 18
        EXAMPLE PROBLEM 8 (USER DEFINED TUNNEL SECTION)
  33 OUTER REINFORCING BAR STRESS
        AT LOAD STEP = 18
        EXAMPLE PROBLEM 8 (USER DEFINED TUNNEL SECTION)
```

Table 6.30 Listing of text output file PLTXY.LST

PLOT NO 1	TITLE DISPLACEMENT HISTORY AT LOCATION : 1 AT NODE 498
2	DISPLACEMENT HISTORY AT LOCATION : 2 AT NODE 34
3	DISPLACEMENT HISTORY AT LOCATION : 3 AT NODE 66
4	DISPLACEMENT HISTORY AT LOCATION : 4 AT NODE 15
5	DISPLACEMENT HISTORY AT LOCATION : 5 AT NODE 1065
6	DISPLACEMENT HISTORY AT LOCATION : 6 AT NODE 2226
7	DISPLACEMENT HISTORY AT LOCATION : 7 AT NODE 1831
8	DISPLACEMENT HISTORY AT LOCATION : 8 AT NODE 1859
9	DISPLACEMENT HISTORY AT LOCATION : 9 AT NODE 2797
10	DISPLACEMENT HISTORY AT LOCATION : 10 AT NODE 1816

6-220 Example 8

6.9 Example 9

Example 9 is the same as Example 8 in Section 6.8 except that the excavation and liner installation for the left box tunnel are assumed to occur instantaneously and simultaneously so that the liner interacts with the surrounding medium immediately after excavation and resists full tunnel displacement. Shotcrete and rock bolts are not included for the left box tunnel. Lining analysis after tunnel excavation is not performed for this example problem.

Table 6.31 lists the input data for Example 9. Text output file STEP.LST in Table 6.32 shows steps where major excavations and liner installation for the box tunnel take place. Finite element mesh generated by TUNA Plus is shown in Figure 6.145.

Selected graphical outputs from PLOT-2D at the completion of tunnel excavation are shown in Figures 6.146 to 6.153.

Selected displacement history graphical outputs from PLOT-XY are shown in Figures 6.154 to 6.157.
Example 9 6-231

Table 6.31 Listing of input file EX9.DAT

```
*
* GENERAL INFORMATION
* CARD 1.1
* TITLE
EXAMPLE PROBLEM 9 (USER DEFINED TUNNEL SECTION)
*
* CARD 1.2
* IUNIT
   3
*
* CARD 1.3
* MODEL IGEN IEXMESH ILNCOUPL IEXORDER IRBP
  4
             0
                      0
                                   0
                                                  1
                                                                 0
*
* CARD 1.4
* IEZ1 IEZ2 IEZ3 IEZ4 IEZ5 IEZ6 IEZ7 IEZ8
1 2 1 2 3 3 4 4
*
* TUNNEL ANALYSIS BOUNDARY
* CARD 2.1
* HT HL W WP HP
25.0 30. 70. 25. 10.
                                          DELTAX DELTAY NDYMAX
2.0 3.0 40
                                    ΗP
*
* SOIL / ROCK LAYER INFORMATION
*
* CARD 3.1
* NLAYER
  3
* CARD 3.2
* LAYERNO
                         GAMA RKO E
                                                    V PHI
                                                                      С
                Н
                                                                              Т

        H
        GAMA
        RKO
        E
        V
        PH1

        5.0
        1.9
        0.43
        5000.
        0.30
        35.

        5.0
        2.4
        0.33
        20000.
        0.25
        40.

        45.0
        2.55
        0.25
        200000.
        0.20
        45.

                                                                      30. 30.
70. 40.
100. 50.
  1
   2
  3
*
* ADDITIONAL TOP SOIL / ROCK LAYER
*
* CARD 3.3.1
* NATLAYER
  0
*
* USER SPECIFIED SOIL / ROCK LAYER
*
* CARD 3.4.1
* NUSLAYER
  0
*
* USER SPECIFIED DISTRIBUTED SURFACE LOAD
* CARD 3.5.1
* NUSXPD
  0
*
```

6-232 Example 9

```
* SHOTCRETE PROPERTIES
* CARD 3.6
                         C T GAMA
500. 100. 2.4
                  PHT
1.5E+06 0.2 30.
* LINING PROPERTIES
* CARD 3.7
  E V PHI
2.1E+06 0.2 30.
                          C T GAMA ER VR
500. 300. 0.0 2.1E+07 0.
* E
*
* ROCK BOLT PROPERTIES
*
* CARD 3.8
 A WL E STRSI SIGMAY
0.000491 0.00383 2.1E+07 0.0 2.3E+04
* A
                                                       Ef
                                                        1.0
* INTERFACE PROPERTIES BETWEEN SHOTCRETE AND LINING
* CARD 3.9
* NM E
                   G
           L G T 200000. 2.0 0.001
2
* C
           PHI
 0.001 5.0
         E2 E3 E4 S1 S2 S3 S4
0.0 1.0E-7 1.0 -200000. 0.0 2.E-02 2.E-02
* E1
-1.0
*
* TUNNEL DIMENSION [ RIGHT TUNNEL ]
* CARD 4.0
               GA
0.5
* ISTYPE GR
3 1.0
* CARD 4.1-1
* NSEG SHOR STR SBR
4 8.0 6.0 0.0
* SEGMENT 1 (CIRCULAR ARS)
* R XO YO TB
6.1683 0.0 1.85 90.
                              TE TL
30. 0.30
                                            ASI ASO
0.0020 0.0020
* SEGMENT 2 (CIRCULAR ARS)
* R XO YO TB
                                     TL
                                             ASI ASO
 * R XO YO TB
4.9413 1.062 2.463 30.
* R
                              ΤE
                                            0.0022 0.0022
                              -26.0 0.32
* SEGMENT 3 (CIRCULAR ARS)
                             TE
* R X0 Y0 TB TE TL
0.51 5.045 0.521 -26.0 -90. 0.34
                                             ASI
                                                   ASO
                                            0.0024 0.0024
* SEGMENT 4 (STRAIGHT LINE)
* 0 XB YB XE
0 5.045 0.0 0.0
                              YE TL ASI ASO
0.0 0.40 0.0030 0.0030
* CARD 4.2
* INVSHOT TS INVLN TL DI ASI DO ASO
1 0.20 1 0.4 0.05 0.0030 0.05 0.0030
* CARD 4.3
* CARD 4.3
* NUMRB LRB LSPACING TSPACING NSRB
11 3.0 1.35 1.2 2
*
```

Example 9 6-233

```
* TUNNEL DIMENSION [ LEFT TUNNEL ]
* CARD 4.0
* ISTYPE GR
               GΑ
        1.0
              0.5
 3
* CARD 4.1-1
                   SBR
* NSEG SHOR
               STR
5 0.0 0.0 0.0
* SEGMENT 1 (STRAIGHT LINE)
* 0 XB YB
0 0.0 6.0
              YB XE
6.0 5.5
                                        ASI ASO
0.0066 0.0044
                           ΥE
                                 TL
                           YE TL
6.0 0.40
* SEGMENT 2 (CIRCULAR ARC)
        XO YO TB
5.5 5.5 90.
* R XO
                    TΒ
                           ΤE
                                 ΤL
                                        ASI
                                                ASO
 0.5
                           0.0
                                0.40
                                       0.0066 0.0066
*
 SEGMENT 3 (STRAIGHT LINE)
* 0 XB YB XE
0 6.0 5.5 6.0
                           ΥE
                                 ΤL
                                        ASI
                                                ASO
0 6.0 5.5 6.0
* SEGMENT 4 (CIRCULAR ARS)
                                        0.0024 0.0024
                                0.32
                           0.5
* R XO YO TB
0.5 5.5 0.5 0.0
                           ΤE
                                 TL
                                        ASI
                                                ASO
                                        0.0026 0.0026
                                 0.36
                          -90.
* SEGMENT 5 (STRAIGHT LINE)
            YB XE
0.0 0.0
* 0 XB
                           ΥE
                                 TL
                                        ASI
                                                ASO
 0
        5.5
                           0.0 0.38
                                        0.0028 0.0028
* CARD 4.2
               INVLN
* INVSHOT TS
-1 0.20
                                DI ASI DO ASO
0.05 0.0028 0.05 0.0028
                           ΤL
                           0.48
               0
* CARD 4.3
               LSPACING TSPACING NSRB
1.35 1.6 2
* NUMRB LRB
 0
         3.0
*
* _____
*
* EXCAVATION STRESS RELEASE AND SHOTCRETE MODULUS CHANGE
* CARD 5.1
* PSR
      PASR
25.
                RESH
  50.
                0.33
* EXTERNAL LOADS FOR LINING ANALYSIS
* CARD 6.1
* LDTYPE
 0
*
* WATER PRESSURE
* CARD 6.2
                       GAMAW
* LGWINV NWPSTEP DGW
 0
    3 10.
                         1.0
+
```

6-234 Example 9

```
*
* LOOSENING LOAD
* CARD 6.3.1
* LSDADD NLDSTEP HPRES VPRES
0 0 0.00 0.0
*
* PRIMARY SUPPORT DEGRADATION *
* CARD 6.4
* LPSDEG REDH
0 1.0
*
* END OF DATA
```

Example 9 6-235

Table 6.32 Listing of text output file STEP.LST

STEP NO DESCRIPTIONS 9 Installation of Lining in Left Tunnel 5 Excavation of Upper Right Core in Right Tunnel Excavation of Upper Left Core in Right Tunnel 8 Excavation of Lower Right Core in Right Tunnel Excavation of Lower Left Core in Right Tunnel 11 Excavation of Upper Right Core in Left Tunnel Excavation of Lower Right Core in Left Tunnel 14 Excavation of Upper Left Core in Left Tunnel Excavation of Lower Left Core in Left Tunnel

